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Preface

I would encourage readers to get the most out of this book by using it primarily as a reference book, where relevant 
sections or chapters are consulted as necessary. However, if the reader does wish to read the book straight through, I 
hope that this will provide a good overview of all the techniques which are in use in the field. In this book, a broad 
interpretation of corpus-based study is made. For example, the study of stylometry is relevant to corpus linguistics 
even if it is not traditionally identified as such. This book is concerned more with the ways in which statistics can be 
applied than with precise details of how the statistics work, but space is devoted to the mathematics behind the 
linguistic case studies as well as to descriptions of the case studies themselves.
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1 
Basic statistics

1 Introduction

This chapter will commence with an account of descriptive statistics, described by Battus (de Haan and van Hout 
1986) as the useful loss of illformation. It also involves abstracting data. In any experimental situation we are 
presented with countable or measurable events such as the presence or degree of a linguistic feature in a corpus. 
Descriptive statistics enable one to summarise the most important properties of the observed data, such as its average 
or its degree of variation, so that one might, for example, identify the characteristic features of a particular author or 
genre. This abstracted data can then be used in inferential statistics (also covered in this chapter) which answers 
questions, formulated as hypotheses, such as whether one author or genre is different from another. A number of 
techniques exist for testing whether or not hypotheses are supported by the evidence in the data. Two main types of 
statistical tests for comparing groups of data will be described; i.e., parametric and non-parametric tests. In fact, one 
can never be entirely sure that the observed differences between two groups of data have not arisen by chance due to 
the inherent variability in the data. Thus, as we will see, one must state the level of confidence (typically 95 per cent) 
with which one can accept a given hypothesis.

Correlation and regression are techniques for describing the relationships in data, and are used for answering such 
questions as whether high values of one variable go with high values of another, or whether one can predict the 
value of one variable when given the value of another. Evaluative statistics shows how a mathematical model or 
theoretical distribution of data relates to reality. This chapter will describe how techniques such as regression and 
loglinear analysis enable the creation of imaginary models, and how these are compared with real-world data from 
direct corpus analysis. Statistical research m linguistics has traditionally been univariate, where the distribution of a 
single variable such as word frequency has been studied. However, this chapter
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will also cover multivariate techniques such as ANOVA and multiple regression which are concerned with the 
relationship between several variables. As each new statistical procedure is introduced, an example of its use in 
corpus linguistics will be given. A synopsis of the tests described in this chapter is given in Table 1.1.

Test Description Example

z score 2.4 2.4

t test for independent samples 3.2.1 3.2.2

Matched pairs t test 3.2.3 3.2.4

Wilcoxon rank sums test 3.3.1 3.3.2

Median test 3.3.3 3.3.4

Sign test 3.3.5.1 3.3.5.2

Wilcoxon matched pairs signed ranks test 3.3.5.3 3.3.5.4

Analysis of variance (ANOVA) 3.4.1 3.4.2

Chi-square test 4.1 4.2

Pearson productmoment correlation 4.3.1 4.3.2

Spearman rank correlation coefficient 4.3.3 4.3.4

Regression 4.4 4.4.1

Multiple regression 4.4.2 4.4.3

Loglinear analysis 5 5.4

Table 1.1 Statistical tests described in this chapter
 

This chapter will conclude with a description of Bayesian statistics, where we discuss our degree of belief in a 
hypothesis rather than its absolute probability.

2 Describing Data

2.1 Measures of central tendency



The data for a group of items can be represented by a single score called a measure of central tendency. This is a 
single score, being the most typical score for a data set. There are three common measures of central tendency: the 
mode, the median and the mean. The mode is the most frequently obtained score in the data set. For example, a 
corpus might consist of sentences containing the following numbers of words: 16, 20, 15, 14, 12, 16, 13.The mode is 
16, because there are more sentences with that number of words (two) than with any other number of words (all 
other sentence lengths occur only once). The disadvantage of using the mode is that it is easily affected by chance 
scores, though this is less likely to happen for large data sets.

The median is the central score of the distribution, with half of the scores being above the median and half falling 
below. If there is an odd number of items in the sample the median will be the central score, and if there is an even
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number of items in the sample, the median is the average of the two central scores. In the above example, the median 
is 15, because three of the sentences are longer (16, 16, 20) than this and three are shorter (12, 13, 14).

The mean is the average of all scores in a data set, found by adding up all the scores and dividing the total by the 
number of scores. In the sentence length example, the sum of all the words in all the sentences is 106, and the 
number of sentences is 7. Thus, the mean sentence length is 106/7 = 15.1 words. The disadvantage of the mean as a 
measure of central tendency is that it is affected by extreme values. If the data is not normally distributed, with most 
of the items being clustered towards the lower end of the scale, for example, the median may be a more suitable 
measure. Normal distribution is discussed further in the section below.

2.2 Probability theory and the normal distribution

Probability theory originated from the study of games of chance, but it can be used to explain the shape of the 
normal distribution which is ubiquitous in nature. In a simple example, we may consider the possible outcomes of 
spinning an unbiased coin. The probability (p) of the coin coming up heads may be found using the formula p = a/n 
where n is the number of equally possible outcomes, and a is the number of these that count as successes. In the case 
of a two-sided coin, there are only two possible outcomes, one of which counts as success, so p = 1/2 = 0.5. The 
probability of the coin coming up tails (q) is also 0.5. Since heads and tails account for all the possibilities, p + q = 1; 
and as the outcome of one spin of the coin does not affect the outcome of the next spin, the outcomes of successive 
spins are said to be independent. For a conjunction of two independent outcomes, the probability of both occurring 
(p) is found by multiplying the probability of the first outcome p(a) by the probability of the second outcome p(b). 
For example, the probability of being dealt a queen followed by a club from a pack of cards would be 

. In the case of a coin being spun twice, the probability of obtaining two heads would be 
, and the probability of obtaining two tails would also be 1/4. The probability of obtaining a 

head followed by a tail would be 1/4, and that of obtaining a tail followed by a head would also be 1/4. Since there 
are two ways of obtaining one head and one tail (head first or tail first), the ratio of the outcomes no heads:one head:
two heads is 1:2:1. Related ratios of possible outcomes for any number of trials (n) can be found using the formula 
(p + q) to the power n. If n is 3, we obtain p3 + 3p2q + 3pq2 + q3.This shows that the ratio of times we get three 
heads:two heads:one head:no heads is 1:3:3:1 .The number of times we expect to get r heads in n trials is called the 
binomial coefficient. This quantity, denoted by
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can also be found using the formula n!/r! (n-r)! where, for example, 4! means 4 . The probability of 
success in a single trial is equal to

Plotting the probability values for all possible values of r produces the binomial probability graph.

Kenny (1982) states that any binomial distribution is completely described by p (probability) and n (number of 

trials).The mean is , and the standard deviation is the square root of ( ), which is usually written as 

. The distribution is symmetrical if p and q are equally likely (equiprobable), as was the case for the coins, 
but skewed otherwise. When n is infinitely large, we obtain the normal distribution, which is a smooth curve rather 
than a frequency polygon. This curve has a characteristic bell shape, high in the centre but asymptotically 
approaching the zero axis to form a tail on either side. The normal distribution curve is found in many different 
spheres of life: comparing the heights of human males or the results of psychological tests, for example. In each case 
we have many examples of average scores, and much fewer examples of extreme scores, whether much higher or 
much lower than the average. This bell-shaped curve is symmetrical, and the three measures of central tendency 
coincide. That is to say, the mode, median and mean are equal. The normal distribution curve is shown in Figure 1. 1
(a). The importance of this discussion for corpus linguistics is that many of the statistical tests described in this 
chapter assume that the data are normally distributed. These tests should therefore only be used on a corpus where 
this holds true. An alternative type of distribution is the positively skewed distribution where most of the data is 
bunched below the mean, but a few data items form a tail a long way above the mean. In a negatively skewed 
distribution the converse is true; there is a long tail of items below the mean, but most items are just above it. The 
normal distribution has a single modal peak, but where the frequency curve has two peaks bimodal distributions also 
occur. Figure 1.1(b) shows a positively skewed distribution, Figure 1.1(c) shows a negatively skewed distribution 
and Figure 1.l(d) shows a bimodal distribution.

In corpus analysis, much of the data is skewed. This was one of Chomsky's main criticisms of corpus data, as noted 
by McEnery and Wilson (1996). For example, the number of letters in a word or the length of a verse in syllables are 
usually positively skewed. Part of the answer to criticism of corpus data based on the 'skewness' argument is that 
skewness can be overcome by using lognormal distributions. For example, we can analyse a suitably large corpus 
according to sentence lengths, and produce a graph showing how often each sentence length occurs in the corpus. 
The number of occurrences is plotted on the vertical (y) axis, and the logarithm of the sentence length in words is 
plotted along the horizontal (x) axis. The resulting graph will approximate to the normal distribution. Even when 
data is highly skewed, the normal curve is
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Figure 1.1 
Four distribution curves
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still important. The central limit theorem (see Kenny 1982) states that when samples are repeatedly drawn from a 
population the means of the samples will be normally distributed around the population mean. This occurs whether 
or not the distribution of the data in the population is itself normal.

Kenny describes how, at low probabilities, particularly in the region of 0.05 which is important for determining 
statistical significance, the binomial distribution is no longer a good approximation to the normal distribution. Thus, 
we must use a different discrete distribution called the Poisson distribution, given by the formula

where e is the constant equal to about 2.72. The Poisson formula shows the probability of r events occurring where n 
is the number of trials and p is the probability of success at each trial. As was the case for the binomial distribution, 
the Poisson distribution more closely approximates to the normal distribution when n is high. The chi-square test, 
covered in Section 4.1, can be used to compare the normal and Poisson distributions with actual data.

2.3 Measures of variability

The measures of central tendency each provide us with a single value which is the most typical score for a data set. 
However, in describing a data set, it is also important to know the variability of scores within that data set  i.e., 
whether they all fall close to the most typical score, or whether the scores are spread out greatly both above and 
below this most typical score. The three main measures of variability are the range, the variance and the standard 
deviation. The range is simply the highest value minus the lowest value, and is thus, by definition, affected by 
extreme scores. To overcome this problem we may use a related measure, the semi inter-quartile range, which is half 
the difference between the value one-quarter of the way from the top end of the distribution and the value one-
quarter of the way from the bottom of the distribution. For example, the mean number of characters per word in 
samples of text taken from nine different authors might be 5.2, 4.6, 4.4, 3.9, 3.6, 3.5, 3.4, 3.2 and 2.8. The value one-
quarter of the way from the top of the distribution is 4.4, since two values are greater than this and six are less. The 
value one-quarter of the way from the bottom of the distribution is 3.4, since two values are less than this and six are 
greater. The semi inter-quartile range is (4.4-3.4)/2 =0.5.

The variance is a measure which takes into account the distance of every data item from the mean. The simplest 
measure of the deviation of a single score from the mean is simply to subtract the mean value from that score. This 
does not translate into a suitable score of overall variability, however, since the sum of these differences over the 
entire data set will always be zero, since some
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values will be above the mean and some will be below it. To overcome this problem, the deviation of each 
individual score from the mean is squared, and these squares of the differences are added together to measure the 
total variability within the data set. By convention, this sum of squares is divided by N-1, where N is the number of 
data items, in order to obtain the variance. The greater the variance, the more scattered the data, and the less the 
variance, the more uniform is the data about the mean. The square root of variance is called the standard deviation, 
and may be expressed using the following formula:

As an example, consider the data in Table 1.2, which shows the title lengths in number of characters for 10 
Indonesian short stories, gathered by the author.

Title Length Mean length Deviation Deviation squared

x 2

1 11 13 -2 4

2 7 13 -6 36

3 7 13 -6 36

4 19 13 6 36

5 9 13 -4 16

6 11 13 -2 4

7 9 13 -4 16

8 33 13 20 400

9 9 13 -4 16

10 15 13 2 4

Sum = 130 Sum = 568

Table 1.2 
Calculation of the standard deviation for the title lengths of 10 stories

 

The variance may be found using the formula: , thus variance = 568/9 = 63.1. The 

standard deviation is the square root of 



2.4 The z score

The normal curve is completely defined by the mean and the standard deviation. If these are known, the shape of the 
entire curve can be constructed. An important property of the normal distribution curve is that if a vertical line is 
drawn through the normal curve at any number of standard deviations from the mean, the proportions of the area 
under the curve at each side of the cut off point are always the same, as shown in Figure 1.2. A line drawn at the 
mean
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will always cut off a tail containing 50 per cent of the total curve, and a line drawn one standard deviation above the 
mean will always cut off a tail containing about 15.9 per cent of the area under the curve. For a line drawn two 
standard deviations above the mean the area in the tail will always be about 2.3 per cent of the total, and the area left 
by a line drawn three standard deviations above the mean will be about 0.1 per cent.

Figure 1.2 
Areas of the normal distribution curve beyond a given number of 

standard deviations above the mean

The z score is a measure of how far a given value is from the mean, expressed as a number of standard deviations. 
The value under consideration minus the mean value is found first with z being the difference divided by the 
standard deviation. We might find that the mean number of times the word there occurs in a 1000-word sample of 
text written by a given author is 10, with a standard deviation of 4.2.A text sample with 8 occurrences of there 
would have a z score of (8-10)/4.2 = -4.76. Appendix 1 gives the proportion of the total area under the tail of the 
curve which lies beyond any given z value. This area is a measure of how probable an individual z score is for any 
test. We can discover the probability of any score in a normal distribution if we compute the z score and consult the 
z-score table. For example, the area beyond the z score of 1.64 is 5 per cent of the total area under the normal 
distribution curve. This means that the probability of encountering a value with a z score of 1.64 or more within a 
normally distributed data set is 5 per cent or less.

If two different data sets are both normally distributed, and the mean and standard deviation for each are known, 
then we can make use of the z score to compare them. In order to compare values over two tests which have 
different units of measurement, these values may be converted to z scores.
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2.5 Hypothesis testing

The measures described so far provide means of describing data sets. However, m most cases we will not be content 
with merely describing data but we will need to know whether it can be used as evidence for or against experimental 
hypotheses. For example, Francis and Kucera (1967) found, in a study of the Corpus of Present-Day Edited 
American English, 1 that the mean sentence length in government documents was 25.48 words, while the mean 
sentence length in the corpus as a whole was 19.27. It may be that these observed differences are great enough to 
support the hypothesis that sentences in government documents are longer than those found in general texts, but 
equally, the observed differences might merely be due to the differences one would normally expect between two 
comparable data sets, the differences between them being purely due to chance. This second supposition is called the 
null hypothesis.

When employing statistical tests, hypotheses are stated in the null form. The null hypothesis states that there is no 
difference between the sample value and the population from which it was drawn. In general, the researcher hopes to 
disprove the null hypothesis, and show that the data item under study is significantly different from the population in 
general. In many fields of research, the null hypothesis is not rejected unless there are fewer than five chances in 100 
of obtaining these results; in other words, that the probability of obtaining these results is less than 0.05. The purpose 
of statistical tests is thus to give us confidence in claims about the data, so that we may claim statistical significance 
for our results, by estimating the probability that the claims are wrong.

Where individual data items achieve scores with very low probability, i.e. they are either much higher or much 
lower than expected, these scores fall under the tails of the distribution curve. In a two-tailed test, we do not specify 
the nature of the difference (whether significantly lower or higher than the mean) in advance. In a one-tailed test, the 
likely direction of the difference is known beforehand. A lower z score is required to reject a one-tailed null 
hypothesis than to reject a two-tailed one. This is because the area under the normal distribution curve in a one-tailed 
test beyond the cut-off point for 0.05 probability must be divided equally between the left and right tails in a two-tail 
test, and thus each region has an area of 0.025. Consultation of the z-score tables shows that a z score of-1.64 leaves 
an area of 0.05 beyond the cut-off point. A z score of 1.96 is required to leave an area of 0.025.

2.6 Sampling

Sometimes it is not practical to study an entire corpus. For example, we may be looking at a feature which is 
inherently frequent, such as the definite article in English. We would absolutely not want to look at all examples 
retrieved from a 100,000,000-word corpus so we must select a sample which allows us to draw conclusions just as 
confidently as if the entire corpus had been used. A sample can be taken as representative of a population only if it is 
a random
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sample, i.e., a sample chosen in such a way that every possible sample has an equal chance of being selected. One 
method of sampling is called spread sampling, which requires the selection of small samples (taken, for example, 
from a corpus of text) at different starting points. The starting points of the samples are randomly chosen, perhaps by 
using a table of random digits. In stratified random sampling, often used when conducting opinion polls, the 
population of people to be questioned is divided according to such factors as age, sex, geography, and social and 
economic status. 2 These different sections of the population can be represented in the same proportion as they occur 
in the population as a whole, but within each section the members of the sample should be chosen by random 
methods.

In the context of corpus linguistics, there are three principal kinds of relationship between the sample and the 
population of interest. We may first wish to make generalisations about a large existing population, such as a corpus, 
without going to the trouble of testing it in its entirety. Secondly, we may wish to perform a study to determine 
whether the samples taken from a part of the corpus exhibit the characteristics of the whole corpus. In such cases we 
are, in fact, asking whether the relationship between the test sample and the whole corpus is that which would be 
expected between a random sample and the whole population. Finally, we might explore cases where the population 
is a hypothetical one rather than an actual one. Here we compare two existing texts to see whether their statistical 
behaviour is consistent with that expected for two different samples drawn from the same hypothetical corpus. Such 
comparisons are often made in authorship studies, for example, where an undisputed corpus of the work of one 
author is compared with a controversial text of doubtful authorship.A comprehensive survey of such authorship 
studies will be given in Chapter 5, Section 2. We need to know whether the statistics of the corpus of the undisputed 
work and the controversial text are such as would be expected in two samples from the same population. This 
population is a hypothetical one, since it consists of everything the author could have written by exhibiting the same 
statistical or stylistic behaviour as that found in the undisputed corpus. When performing a statistical survey of text 
content, we must clearly define the population from which our text samples were drawn, in order that our 
experiments may be reproduced. This involves, for example, recording whether or not chapter headings or stage 
directions are being used.

3 Comparing Groups

3.1 Parametric versus non-parametric procedures

In statistics, four different types of scales of measurement should be considered, since the choice of measurement 
scale for the data generally determines the range of statistical tests which can be employed on the data. The concept 
of a ratio scale is exemplified by measurement in centimetres. The units on the scale are the same, and so the 
difference between one centimetre and two
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centimetres is the same as the difference between nine centimetres and ten centimetres. An interval scale differs 
from a ratio scale in that the zero point is arbitrary  the Centigrade scale of measuring temperature, for example. 
Thus, although we can say that ten centimetres is twice as long as five centimetres, we cannot say that 10 degrees 
Centigrade is twice as hot as five degrees. If we simply record the order, rather than the distance in time, between 
the finishers in a cross-country race we employ an ordinal scale. Whenever items can be categorised  as noun, verb 
and adjective, for example  but the numbers we assign to the categories are arbitrary and do not reflect the primacy 
of any one category over the others, we have a nominal scale.

Parametric tests assume that dependent variables are interval- or ratio-scored. They often assume that the data is 
normally distributed, and that the mean and standard deviation are appropriate measures of central tendency and 
dispersion. However, they can work with any type of distribution with parameters. In parametric tests (such as the t 
test, described in Section 3.2.1), the observations should be independent  the score assigned to one case must not 
bias the score given to any other case.

Non-parametric tests work with frequencies and rank-ordered scales. The main advantage of non-parametric 
procedures is that the tests do not depend on the population being normally distributed. If sample sizes are small, a 
non-parametric test is best unless the population distribution is known to be normal. Non-parametric tests can treat 
data which can be ranked. Such data is encountered whenever a scale comparing two subjects or data items is 'less' 
to 'more' or 'better' to 'worse', without specifying the discrepancy exactly. Non-parametric tests such as the chi-
square test can be used with frequency data and are typically easier to calculate by hand. Their disadvantage is that 
they are 'wasteful' of data. Information is lost when interval measurements are changed to ordinal ranks or nominal 
measurements. Parametric tests use more of the information available in the raw data since the mean and standard 
deviation use all the information in the data, and are thus more powerful than non-parametric tests. With a more 
powerful test there is less chance of making an error in rejecting or accepting the null hypothesis, and thus 
parametric tests are the tests of choice if all the necessary assumptions apply. Non-parametric tests can deal with 
interval and ratio data as well, if no distributional assumptions are to be made.

3.2 Parametric comparison of two groups

3.2.1 The t test for independent samples

Having calculated the mean and standard deviation for a group, we then want to know whether that mean is in any 
way exceptional, and thus need to compare the mean with that of some other group. The t test tests the difference 
between two groups for normally-distributed interval data where the mean and standard deviation are appropriate 
measures of central tendency and
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variability of the scores. We use a t test rather than a z-score test whenever we are dealing with small samples 
(where either group has less than 30 items). In selecting the appropriate statistical test, we must also consider 
whether the data comes from two different groups (a between-groups design) or is the result of two or more 
measures taken from the same group (a repeated measures design). Both types of experimental design can be further 
subdivided into one-sample or two-sample studies.

In one-sample studies, the group mean is compared with that of the population from which it was drawn, in order to 
find whether the group mean is different from that of the population in general. In two-sample studies, the means 
from two different groups (often an experimental group and a control group) are compared to determine whether the 
means of these two groups differ for reasons other than pure chance.

The normal distribution is made up of individual scores. The sampling distribution of means is a distribution which, 
instead of being made up of individual scores, is composed of class means, and also describes a symmetric curve. 
The means of all groups within a population are much more similar to each other than the individual scores in a 
single group are to the group mean, because the mean smooths out the effect of extreme individual scores. The 
average of a group of means is called the population mean, µ.

A one-sample study compares a sample mean with an established population mean. The null hypothesis for a one-
sample t test would be that the test scores show no difference between the sample mean and the mean of the 
population. To discover whether the null hypothesis is true, we must determine how far our sample mean ( ) is 
from the population mean (µ).The unit by which this difference is evaluated is the standard error of the means, 
which is found by dividing the standard deviation of our sample group by the square root of the sample size. Thus, 
the formula for the observed value of t is as follows:

For example, an imaginary corpus containing various genres of text might contain an average of 2.5 verbs per 
sentence with a standard deviation of 1.2. The subset of this corpus consisting of scientific texts might have an 
average of 3.5 verbs per sentence with a standard deviation of 1.6. If the number of sentences in the scientific texts 
was 100, then the standard error of the means would be 3.5 (standard deviation of the sample group) divided by the 
square root of 100 (square root of the sample size) = 3.5/10 = 0.35. The observed value of t for this comparison 
would then be (3.5 - 2.5)/0.35 = 2.86.

Before we can look up this t value on the appropriate table to see if it corresponds to a statistically significant 
finding, we must determine the degrees of freedom in the study. The number of degrees of freedom is the number of 
values of the variable which are free to vary. If there are N scores contributing
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to a given mean value, only N-1 of them are free to vary since the other one is constrained to contribute just enough 
to the value of the mean. For example, if we have three variables with a mean of 10, we can select any values for the 
first two variables (a and b), but the third value is constrained to be 30-(a+b) if we are to maintain our mean of 10. In 
this simple case we therefore have two degrees of freedom. To obtain the degrees of freedom for a t test we use the 
formula N-1 where N is the number of the sample, so, in this corpus, comparison degrees of freedom = 100-1 = 99.

In the table given in Appendix 2, the probability levels are given across the top of the table, while the degrees of 
freedom are given in the first column. The critical value of t needed to reject the null hypothesis is found by 
checking the intersection of the row for the appropriate degrees of freedom and the selected probability cut-off point. 
If t is equal to or greater than this critical value, the null hypothesis may be rejected with confidence and we may 
conclude that the sample group mean is significantly greater or less than the population mean. Since there is no entry 
in the table for 99 degrees of freedom, we must consult the row for the next lower value of degrees of freedom, 60. 
The critical value of t for a one-tailed or directional test at the 5 per cent significance level is 1.671. Our observed 
value of t is greater than this, and thus we have disproved the null hypothesis that there is no significant difference 
between the number of verbs per sentence in scientific and general texts.

In making a two-sample comparison, we wish to compare the performance of two groups. The null hypothesis states 
that we expect any difference found between the two groups to be within what is expected due to chance for any two 
means in a particular population. To reject the null hypothesis, we must show that the difference falls in the extreme 
left or right tail of the t distribution. As with the one-sample study, we need to know the difference between the two 
means of the two groups, and to discover whether that difference is significant. To find out, we must place this 
difference in a sampling distribution and discover how far it is from the central point of that distribution. This time a 
quantity known as the standard error of difference between two means is used as the yardstick for our comparison 
rather than the standard error of a single mean. The formula for t in a two-sample study is as follows:

The formula for the standard error of differences between means is

where  = standard deviation of the experimental group,  = number in the experimental group,  = standard 

deviation of the control group, and  = number in the control group. Once again, critical values of t can be looked 
up the t distribution table given in Appendix 2.
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When employing t tests, one cannot cross-compare groups. For example, one cannot compare groups A and B, A 
and C, then B and C. An attempt to use the t test for such comparisons will make it artificially easy to reject the null 
hypothesis. A parametric test for the comparison of three or more groups such as ANOVA (described in Section 3.4) 
should be used for such comparisons.

An assumption of the t test that relates to the normal distribution is that the data is interval-scored. It is also assumed 
that the mean and standard deviation are the most appropriate measures to describe the data. If the distribution is 
skewed, the median is a more appropriate measure of central tendency, and in such cases, a non-parametric test 
should be employed as described in Section 3.3.

3.2.2 Use of the t test in corpus linguistics

Imagine that the data in Table 1.3 has been obtained from a corpus of learners' English. The number of errors of a 
specific type occurring in each of 15 equal-length essays are shown; eight produced by students learning by 
traditional methods (the control group) and seven produced by students learning by a novel method that we wish to 
evaluate (the experimental group).

Control n=8 Test n=7

10 8

5 1

3 2

6 1

4 3

4 4

7 2

9 -

Table 1.3 
Error rates produced by students taught by two different methods

 

The mean number of errors made by the control group was 6, with a standard deviation of 2.21. The experimental 

group, on the other hand, made a mean number of errors of 3, with a standard deviation of 2.27. Thus  was 7,  

was 2.27,  was 8 and  was 2.21. Substituting these values into the formula for standard error of differences 
between means (SEDM), we obtain
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The difference between the two sample means was 6-3 = 3. Since t is equal to the difference between the two sample 
means divided by the standard error of differences between means, we obtain a t value of 3./1.161 = 2.584. The 

number of degrees of freedom is , or 13. Consultation of Appendix 2 shows that the critical value of 
significance at the 5 per cent level of t for 13 degrees of freedom is 2.16. Since the observed value of t (2.584) is 
greater than this, we have shown that the students learning by the novel method made significantly fewer errors in 
our experiment.

Church et al. (1991) provide an interesting variation on the t test. They examine the occurrence of idiomatic 
collocations, quantifying, for example, the relative likelihoods of encountering the phrases powerful support and 
strong support in their corpus. They provide the basic formula

where f (powerful support) is the number of times the word pair powerful support appeared in the corpus. In fact, 
powerful support occurred only twice, while strong support occurred 175 times. After taking into account a small 
correction factor, this yielded a t value of N 11.94, confirming that the collocation powerful support was much less 
common than the collocation strong support. By employing this method, they were able to tabulate those words 
which are most likely to appear after strong (showing, support, defence, economy, gains, winds, opposition, sales) 
and those which are most likely to appear after powerful (figure, minority, post, computers).

3.2.3 The matched pairs t test

The versions of the t test described above are not appropriate for repeated-measures designs. These require another 
procedure called the matched pairs t test This is used for other instances where correlated samples are being 
compared; for example, where each feature in an investigation has been observed under two different conditions, 
such as a word in a spoken and a written corpus, or if pairs of subjects have been matched according to any 
characteristic. The original t test formula must be changed slightly, because we expect that the performance of the 
same feature on two measures will be closer than the performance of two different features on two measures. If the 
scores obtained for each pair are x1 and x2, and the difference between them in each case is d, the formula for t in 
the matched pairs t test is as follows:

where N is the number of pairs of observations.
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3.2.4 Use of the matched pairs t test in corpus linguistics

Butler (1985a) gives an example where a corpus containing the speech of 10 different speakers is analysed. The 
lengths of the vowels produced by those speakers was found to vary according to the consonant environment in 
which those vowels occurred. The recorded vowel lengths (in arbitrary time units) in two sentences, each containing 
one of the consonant environments under study, are shown in Table 1.4, along with their differences and the squares 
of their differences.

Speaker Environment 1 Environment 2 d d2

1 22 26 -4 16

2 18 22 -4 16

3 26 27 -1 1

4 17 15 2 4

5 19 24 -5 25

6 23 27 -4 16

7 15 17 -2 4

8 16 20 -4 16

9 19 17 2 4

10 25 30 -5 25

Table 1.4 
Lengths of a vowel in two environments

 

Using the formula for t for matched pairs, we obtain

Appendix 2 gives the critical values for t with N-1 = 9 degrees of freedom. Ignoring the sign of t, for a one-tailed test 
we find that we can discount the null hypothesis that there is no difference between the vowel lengths at the 1 per 
cent level.

3.3 Non-parametric comparisons of two groups



Non-parametric tests are used when comparisons between two groups of data are required, but the assumptions of 
the t test cannot be fulfilled. One must first decide whether the comparison is between two independent groups (in 
which case either the median test or the Wilcoxon rank sums test could be used) or a comparison of the same group 
at two different time intervals (where, for example, the sign test or the Wilcoxon matched pairs signed ranks test 
might be used).
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3.3.1 The Wilcoxon rank sums test or MannWhitney, U test

The Wilcoxon rank sums test is also known as the MannWhitney U test. This test compares two groups on the basis 
of their ranks above and below the median and is often used when comparing ordinal rating scales rather than 
interval type scores. The scores for the two groups of data are first combined and ranked. The sum of the ranks 
found in the smaller group is then calculated, and assigned to the variable R1, and the sum of the ranks in the larger 
group is assigned to the variable R2. The test statistic U is found by use of the following formulae:

U is the smaller of U1 and U2. The distribution of U for various values of N1 and N2 at the 5 per cent significance 
level for a two-tailed test is given in Appendix 3. If the calculated value of U is smaller than or equal to the critical 
value we can reject the null hypothesis.

If there are approximately 20 or more subjects in each group, the distribution of U is relatively normal and the 
following formula may be used, where N = N1 + N2

For a one-tailed test at the 5 per cent significance level, the critical value of z is 1.65. If the calculated value of z is 
less than the critical value, we cannot reject the null hypothesis that there was no significant difference between the 
two groups under comparison.

3.3.2 Use of the Wilcoxon rank sums test in corpus linguistics

McEnery, Baker and Wilson (1994) describe a questionnaire which was circulated to students who used the 
CyberTutor corpus-based grammar-teaching computer program and to students who studied grammar in the 
traditional classroom manner. The questions had the format of 'How difficult/ interesting/useful did you find the 
task?', and were answered on a five-point Likert scale, ranging from 'very difficult' (1 point) to 'very easy' (5 points). 
Aggregate scores were found for each subject in both groups. Improvised data for such a study might be as shown in 
Table 1.5 below. The combined scores are ranked and average scores are given to tied ranks. The sum of the ranks 
for the two groups (53 for the smaller group and 36 for the larger) are derived in Table 1.5.
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Computer-taught Rank Classroom-taught Rank

N2 =7 N1 =7

12 2.5 10 6

9 8 7 12

14 1 8 10

11 4 6 13

8 10 10 6

12 2.5 10 6

9 8 - -

Sum (R2) = 36 Sum (R1) = 53

Table 1.5 
Derivation of R1 and R2 for the Wilcoxon rank sums test

 

Using the formulae for U, we obtain

U is the smaller of U2 and U1, and thus equals 10. Consulting the critical values for U in Appendix 3, and looking 
up the value in the row for N1 = 6 and the column for N2 = 7, we find a critical value of U = 6. Since the value of U 
obtained in this experiment was 10, greater than the critical value, the null hypothesis that there was no difference 
between the evaluations of the human and corpus-/computer-taught groups cannot be rejected. 3

3.3.3 The median test

This test may be employed when the data sets contain some extreme scores as the median will produce a more 
suitable measure of central tendency than the mean. First of all, the data sets for the two groups under investigation 
are pooled, and the overall median is found. If the two original groups have similar medians, then about half the 
observations in each of the groups would fall above the overall median and about half would fall below. To 
investigate the null hypothesis, a contingency table is constructed as shown in Table 1.6 below. A is the number in 
group 1 with scores above the median, B is the number in group 2 with scores above the median, C is the number in 
group 1 with scores below the median, and D is the number in group 2 with scores below the median.
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Group 1 Group 2

Above median A B

Below median C D

Table 1.6 
Contingency table for the median test

 

If we employ the notation N1 = A + C, N2 = B + D, N= N1 + N2 and p = (A + B)/N, then the formula for the 
median test is

The T value corresponds to the z values discussed previously, and so we must compare this value with the z 
distribution to determine whether or not we can reject the null hypothesis. If we do not predict the direction of the 
difference in medians beforehand, a score of 1.96 or better is required to reject the null hypothesis at the 5 per cent 
level.

3.3.4 Use of the median test in corpus Linguistics

Hatch and Lazaraton (1991) give the following example of the use of the median test in English language testing. A 
test was administered to two groups of people, a group of 32 foreign students and a group of 16 immigrant students. 
The median score in the test (over both groups of students) was 25. It was found that 12 of the foreign students 
scored better than 25, and 20 less well. In the group of immigrant students, 12 people again scored over 25, but this 
time only four scored below this median score. These results are summarised in Table 1.7.

Foreign Immigrant Total

Above median 12 12 24

Below median 20 4 24

Total 32 16 48

Table 1.7 
Contingency table of language test scores for two groups of students

 

We first calculate p, then substitute all of our data into the formula for T:



Appendix 1 shows that T is significant at the 1 per cent level, and thus we
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have disproved the null hypothesis that there was no difference in the language test performance of the two groups.

3.3.5 Non-parametric comparisons: repeated measures. While the Mann-Whitney U test can be used as a non-
parametric counterpart of the t test for independent samples, the sign test and the Wilcoxon matched pairs signed 
ranks test are the non-parametric equivalents of the matched pairs t test.

3.3.5.1 The sign test

This test is employed when the data is measured on an ordinal scale. Matched pairs of results are first obtained. For 
example, pairs of acceptability scores for a set of sentences where it is assumed both (a) that the sentence occurs in 
speech and (b) that the sentence occurs in text. For each matched pair, the sign of the difference between result (a) 
and result (b) is calculated. The total number of positive and negative differences is found, and the number of pairs 
with the less frequent sign of difference is called x. N is the number of cases where the matched pair of scores were 
not the same, so either a positive or a negative difference was recorded. Appendix 4 gives critical values of x for 
different values of N and different levels of significance. If the observed value of x is less than or equal to the 
appropriate critical value, we can reject the null hypothesis that the two groups of data do not differ significantly.

If N is around 25 or more, an expression derived from x becomes normally distributed. This enables the z score to be 
calculated using the following formula:

3.3.5.2 Use of the sign test in corpus linguistics

Sentences containing honorifics retrieved from a corpus of Japanese text might be rated on an acceptability scale 
from 0 to 5 according to their use in written or spoken text. The null hypothesis would be that there is no difference 
in the acceptability of Japanese sentences containing honorifics whether they occur in written text or spoken text. 
The sign test would take into account whether a sentence is rated more or less acceptable in the spoken as opposed 
to the written context, but unlike the Wilcoxon matched pairs signed ranks test, does not take into account the 
magnitude of the difference in acceptability. In Table 1.8 the way the sentences were rated for acceptability 
according to whether they occurred in spoken sentences or written text is shown using improvised data.

If the null hypothesis were true, we would expect the number of positive differences to be roughly equal to the 
number of negative differences. In total, we have seven positive differences and one negative difference. The 
number of pairs with the less frequent sign is thus one, and this value is assigned to x. The number of sentences (N), 
discounting those where no difference in acceptability was registered, is eight. Appendix 4, which gives critical 
values of
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Sentence Spoken Written Sign of difference

1 2 4 +

2 4 5 +

3 3 3 0

4 2 4 +

5 2 5 +

6 4 2 -

7 3 3 0

8 2 4 +

9 3 5 +

10 1 2 +

Table 1.8 
Acceptability ratings for Japanese sentences in speech and text

 

x for different values of N and different levels of significance, is then consulted. For N=8 at the 5 per cent 
significance level, the critical value of x is 1. We can thus reject the null hypothesis because our calculated value of 
x is less than or equal to the critical value.

3.3.5.3 The Wilcoxon matched pairs signed ranks test

This test makes the assumption that we can rank differences between corresponding pairs of observations, and thus 
an interval level of measurement is required. The Wilcoxon matched pairs signed ranks test is a more powerful 
procedure than the sign test, since we consider the degree of change as well as the direction of the differences. First 
of all, matched pairs of scores are obtained, and the difference between the first and second score is then found in 
each case. Not only is the sign of the difference recorded, but also the rank of its absolute magnitude compared with 
the other ranked pairs. The sum of the negative ranks and the sum of the positive ranks are both found, and the 
smaller of these is called W. Critical values of W according to N (the number of pairs where a difference in scores 
was found) and the level of significance are given in Appendix 5. If the calculated value of W is less than or equal to 
the critical value, the null hypothesis has been disproved.

When the number of pairs exceeds 25, the z score can be obtained from the following formula:

3.3.5.4 A linguistic application of the Wilcoxon matched pairs signed ranks test



Butler (1985a) gives an example where this test is used to examine the number of errors made in translating two 
passages into French. Table 1.9 shows the raw data for this experiment as well as the differences and signed ranks of 
the
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differences for the data pairs. A mean rank is given in the case of ties, and each rank is given a sign according to 
whether the difference was positive or negative.

Subject no. Passage A Passage B A-B Rank

1 8 10 -2 -4.5

2 7 6 +1 +2

3 4 4 0 -

4 2 5 -3 -7.5

5 4 7 -3 -7.5

6 10 11 -1 -2

7 17 15 -2 +4.5

8 3 6 -3 -7.5

9 2 3 -1 -2

10 11 14 -3 -7.5

Table 1.9 
Errors made in translating two passages into French

 

The pair with no difference is discounted, making the number of pairs, N, equal to 9. The sum of the positive ranks 
is 6.5, while the sum of the negative ranks is 38.5. The smaller of these two values, 6.5, is taken as the value of W. 
Critical values for W are tabulated in Appendix 5. Looking along the row for N = 9 and down the column for 
significance at the 5 per cent level, we find a critical value for W of 5. Since the calculated value of W is greater than 
5, the null hypothesis holds that no significant difference between the number of errors in the two passages has been 
found.

3.4 Comparisons between three or more groups

3.4.1 Analysis of variance (Anova)

ANOVA, or analysis of variance, is a method of testing for significant differences between means where more than 
two samples are involved. ANOVA tests the null hypothesis that the samples are taken from populations having the 
same mean, and thus enables us to test whether observed differences between samples are greater than those arising 
due to chance between random samples from similar populations.

As described above, variance is the square of the standard deviation. ANOVA examines two sources of variance: the 
variance between the samples and the variance within each individual sample. If the variance between the samples is 
significantly greater than the variance within each group the results will suggest that the samples are not taken from 
the same population.



It is first of all necessary to determine the overall mean of the entire data set, found by combining all the samples 
under investigation. The total variability of the entire data set is then the sum of the squares of the differences 
between the overall mean and each data item. Next, the variation between groups must be
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calculated. For each sample, the difference between the overall mean and the sample mean is found and squared. 
The sum of these squared differences over all the samples is the between-groups variation.

The within-groups variation is then found. One method is to find the difference of each score in each sample from 
the mean of its own sample, then square and sum these differences. A simpler method is to simply subtract the 
between-groups variation from the total variation. The two types of variation are then normalised by the appropriate 
degrees of freedom.

The variation between groups is divided by the variation within groups, and the resulting ratio is called the F ratio. If 
F is close to 1, then the between-groups variance is similar to the within-groups variance and the null hypothesis 
holds, namely that the groups do not differ significantly from each other. If F is greater than 1, then it is more likely 
that the samples under test arise from different populations. Whether or not the samples differ significantly may be 
determined by consultation of tables of significant values of the F ratio.

3.4.2 Use of ANOVA in corpus linguistics

Kenny (1982) uses ANOVA to examine whether there is any significant difference between the number of words 
that three different poets (Pope, Johnson and Goldsmith) can fit into a heroic couplet. Five couplets were taken as 
samples of the work of each of the three poets. The overall sample of 15 couplets contained 240 words, and thus the 
overall mean number of words per couplet was 240/15 = 16.The difference between the number of words in each 
couplet in each sample and the overall mean was found, then squared and summed across the entire data set. For 
example, the first line of the Pope sample contained 17 words, which differs from the overall mean by 17-16 = 1 
word. This difference squared is also 1. Performing this calculation and summing the results together for the entire 
data set (all three samples) produced a value of 32. This is the total variation of all the data.

To calculate the between-groups variance, the mean number of words in each sample of five couplets was found - 16 
for Pope, 15 for Johnson and 17 for Goldsmith. The difference between these values and the overall mean of 16 
were 0,-1 and 1 respectively. The squares of these differences were thus found to be 0, 1 and 1. These values were 
each weighted by multiplying the number of data items (couplets) in each sample by five, to yield weighted squared 
differences of 0, 5 and 5. These values were summed to yield a between-groups variance of 10. The within-groups 
variance was the overall variance of 32 minus the between-groups variance of 10, yielding a value of 22.

The next stage was to estimate the population variance. This was done by dividing the sums of squares by their 
appropriate degrees of freedom. For the sum of squares between groups, the degrees of freedom are the number of 
samples minus one. Thus, the estimate of population variance based on the between-groups variance is 10/2 or 5.
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The estimation of the population variance based on the variance between groups was performed in a similar manner. 
Each sample under test consisted of five data items, meaning that there were four degrees of freedom per group. 
Since there were three groups, this meant  degrees of freedom overall. This time the estimation of the 
population variance was made by dividing the variance between groups (22) by the degrees of freedom (12), 
yielding a value of 1.83. Dividing the between-groups estimate of population variance of 5 by the within-groups 
estimate of 1.83 yielded an F ratio of 2.73. Tables of the F ratio are available for various levels of significance, 
including the frequently accepted value of 5 per cent, and are reproduced in Appendix 6.

To consult the F-ratio table, one should find the intersection of the column corresponding to the degrees of freedom 
of the between-groups estimate of the population variance (number of groups minus one) and the row corresponding 
to the within-groups estimate (total number of data items minus the number of groups). The F value for the 5 per 
cent significance level found by Kenny was 3.88. Since this value was greater than the observed value of 2.73, it was 
concluded that the data did not show significant differences between the number of words per couplet used by each 
of the three poets.

4 Describing Relationships

4.1 The chi-square test

Nominal data are facts that can be sorted into categories such as the part of speech of each word in a corpus. They 
are not meant to handle subtleties of degree, but rather are measured as frequencies. We cannot state, for example, 
that a noun is more or less than a verb, but we can tabulate the frequency of occurrence of each part of speech 
encountered in the corpus, and say that nouns are more frequent than verbs. One non-parametric statistical procedure 
which tests the relationship between the frequencies in a display table is the chi-square test. This test does not allow 
one to make cause and effect claims, but will allow an estimation of whether the frequencies in a table differ 
significantly from each other. It allows the comparison of frequencies found experimentally with those expected on 
the basis of some theoretical model.

If we employ the null hypothesis that there is no difference between the frequencies found in each category, the first 
step is to decide what the frequencies would have been if there were no relationship between category and 
frequency. In such a case, all the frequencies would be the same, and equal to the sum of the frequencies in each 
cell, divided by the number of categories. This theoretical number of items per cell in the frequency table is called 
the expected value, E, while the actual number in each cell is called the observed value, O. For each cell, the value 
of O - E is found and squared to give more weight to the cases where the mismatch between O and E is greatest. 
Finally, the value of chi-square is the sum of all the calculated values of (O-E)2/E. Thus, the formula for chi-square 
is as follows:
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When the number of degrees of freedom is 1, as in a  contingency table, Yates's correction factor should be 
applied, where 0.5 is added to each value of O if it is less than E, and 0.5 is subtracted from each value of O if it is 
more than E.

In a one-way design experiment, we are comparing the relation of Frequencies for a single variable such as part of 
speech. The number of degrees of freedom is the number of cells in the frequency table minus one. In a two-way 
design we compare the relation of frequencies according to two different variables, such as part of speech and genre. 
The degrees of freedom is , if we have m levels for the first variable and n levels for the second. 
Expected values are found using the following formula:

The critical value for chi-square for a given significance level and degrees of freedom may be found in Appendix 7. 
If the calculated value of chi-square is greater than or equal to the critical value, we may dismiss the null hypothesis 
that the frequencies in the original table do not differ significantly. To use the chi-square test, the number of items 
investigated must be large enough to obtain an expected cell frequency of 5.

One common application of the chi-square test is to test whether two characteristics are independent, or are 
associated in such a way that high frequencies of one tend to coincide with high frequencies of the other. Such 
experiments are often based on the contingency table, a table in which the outcomes of an experiment are classified 
according to two criteria. For example, in a two-by-two contingency table, the cells are labelled A to D. In cell A we 
record the number of times two events occur simultaneously, for example, the number of times the words radio and 
telescope appear in the same sentence. In cell B we record the number of times the first event occurs but the second 
does not, for example, the number of times the word radio occurs in a sentence but telescope does not. In cell C we 
record the number of times the second event occurs but the first does not, and in cell D we record the number of 
instances where neither event occurs. If a is the number in cell A, b is the number in cell B and so on, and 

, the chi-square with Yates's correction can be calculated as follows:

To remove Yates's correction, simply replace the element N/2 on the top line with zero.
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4.2 Use of the chi-square test in corpus linguistics

4.2.1 Two-way test to compare third person singular reference in English and Japanese texts

In Yamamoto's (1996) printed parallel corpus, the total third person singular references is 708 in the Japanese texts 
and 807 in the English texts. The breakdown of these figures according to five different types of third person 
singular reference is shown in Table 1.10.

Japanese English Row total

Ellipsis 104 0 104

Central pronouns 73 314 387

Non-central pronouns 12 28 40

Names 314 291 605

Common NPS 205 174 379

Column total 708 807 1515

Table 1.10 
Observed frequencies of third person singular reference in English and Japanese texts

 

In order to find out whether the data for the Japanese texts differs significantly from the data for English texts, a two-
way chi-square test can be performed. The expected frequencies in each cell are found by first multiplying the 
relevant row and column totals, then dividing them by the grand total of 1515. The resulting grid of expected 
frequencies is given in Table 1.11.

Japanese English Row total

Ellipsis 48.6 55.4 104

Central pronouns 180.9 206.1 387

Non-central pronouns 18.7 21.3 40

Names 282.7 322.3 605

Common NPS 177.1 201.9 379

Column total 708 807 1515

Table 1.11 
Expected frequencies of third person singular reference in English and Japanese texts

 



The value of (O-E)2/E is then calculated for every cell in the grid, and the results shown in Table 1.12.

The sum of all the values shown in Table 1.12 is 258.8. Since our data is contained within five rows and two 

columns, we have  degrees of freedom. Consultation of Appendix 7 at the row corresponding 
to four degrees of freedom and the column corresponding to a significance level
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Japanese English

Ellipsis 63.2 55.4

Central pronouns 64.4 56.5

Non-central pronouns 2.4 2.1

Names 3.5 3.0

Common NPS 4.4 3.9

Table 1.12 
(O-E)2/E for third person singular reference in English and Japanese texts

 

of 0.001 shows a value of 18.47. Since our calculated value of chi-square is greater than this, the breakdowns of 
third person singular reference types in Japanese and English have been shown to be different at the 0.001 level of 
significance.

4.2.2 Use of the chi-square test to show if data it normally distributed

Butler (1985a) describes a second application of the chi-square test to show whether the observed data is normally 
distributed. For example, the length in seconds for various vowels could be recorded. To see if this data fits the 
normal distribution curve closely, the data can be divided into a number (say 7) of equal time length bands (such as 
0 to 0.1 seconds, 0.1 to 0.2 seconds and so on), and we can find how many vowels fall into each time band. The 
boundary values for each band are converted into z scores, using the formula

From these z scores we wish to determine the proportion of observations expected to fall below each time boundary, 
which can be looked up in z-score tables, once we have determined the number of degrees of freedom. From these 
proportions we can first calculate the proportion of vowels expected to fall in each band for a normal distribution, 
and then the frequencies between successive boundaries using the formula

Butler states that the degrees of freedom in a contingency table are the number of ways in which the observed values 
in the individual cells of the table can vary while leaving unchanged the characteristics of the overall sample 
represented by the table as a whole.

In this example the distributions of observed and expected values have been made to agree on three values: the 
sample size, the mean and the standard deviation. These three values are not free to vary between the two 
distributions (observed and normal), and so we have not 7 (the number of bands) but 7-3=4 degrees of freedom.
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4.2.3 Use of the chi-square test with word frequency lists to measure similarity between corpora

Kilgarriff (1996b, c) discusses the possibility of using the chi-square test to examine the similarity of different text corpora. In 
a hypothetical example, he describes how one might find the frequencies of the common words the, of, and and a as well as the 
combined frequencies of all remaining words in two different corpora. His data is shown in Table 1.13.

Corpus I Corpus 2

Total words 1234567 1876543

the 80123 121045

of 36356 56101

and 25143 37731

a 19976 29164

Table 1.13 
Word frequency data for two different corpora

 

The chi-square statistic, with expected values based on probabilities in the joint corpus, is calculated as shown in Table 1.14.

O1 O2 E1 E2 (O1 - E1)2/E1 (O2 - E2)2/E2

the 80123 121045 79828.5 121339.5 1.09 0.71

of 36356 56101 36689.3 55767.7 3.03 1.99

and 25143 37731 24950.0 37924.0 1.49 0.98

a 19976 29164 19500.0 29640.0 11.62 7.64

Remainders 1072969 1632502 1073599.2 1631871.8 0.37 0.24

Table 1.14 
Calculation of the chi-square for a comparison of word frequencies in two different corpora

 

The sum of the items in the last two columns is 29.17, and since a  contingency table was used there were 

 degrees of freedom. Consultation of the chi-square distribution table shows that the critical value on four 
degrees of freedom at the 99 per cent significance level is 13.3, so that in this case the null hypothesis that both corpora 
comprise words randomly drawn from the same population may be rejected.

However, one problem with the chi-square test is that when the sample size is increased, the null hypothesis is more easily 
rejected. Kilgarriff shows this empirically using the words in Table 1.15 as examples. All the words in the corpus were ranked 
according to frequency, and the ranks of the selected words are shown in the first column.

For all but purely random populations,(O-E)2/E tends to increase with frequency. However, in natural language, words are not 
selected at random, and
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Frequency rank Word (O-E)2/E

1 the 18.76

41 have 10.71

321 six 5.30

5121 represent 4.53

40961 chandelier 1.15

Table 1.15 
Variation in (O-E)2/E with word frequency

 

hence corpora are not randomly generated. If we increase the sample size, we ultimately reach the point where all 
null hypotheses would be rejected. The chi-square test thus cannot really be used for testing the null hypothesis.

On this basis, Kilgarriff proposes a measure of corpus similarity which uses both the chi-square statistic and word 
frequency information for the two corpora. This measure is called chi by degrees of freedom (CBDF), and provides 
a means whereby a similarity measure based on data for more words should be directly comparable with one based 
on fewer words. Each chi-square value is divided by its degrees of freedom. For example, if the chi-square is derived 
from the data for the most common 500 words, the appropriate degrees of freedom is . The CBDF 
measure was employed to examine differences between the text in various newspapers, and some of the results are 
shown in Table 1.16. The data shows that the broadsheet newspapers form one class, and the tabloids another.

Newspaper pair CBDF

Mirror-Independent 14.5

Mirror-Guardian 13.2

Independent-Today 12.3

Guardian-Today 12.0

Mirror-Today 5.2

Guardian-Independent 3.8

Table 1.16 
Chi by degrees of freedom for the vocabulary in pairs of newspapers

 

4.3 Correlation

4.3.1 The Pearson product-moment correlation coefficient



The Pearson correlation coefficient allows one to establish the strength of

relationships in continuous variables. If two experimental variables are plotted against each other on a graph, this is 
said to be a scatter plot. A straight line called the regression line can be drawn to fit the points on the graph as 
closely as possible. This straight line will move up from bottom left to top right if there is a positive relationship 
between the two variables, or down for a
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negative relationship. The tighter the points cluster around the straight line, the stronger the relationship between the 
two variables. A scatter plot with a regression line for a positive relationship between two variables is shown in 
Figure 1.3.

Figure 1.3 
Scatter plot for two positively-related variables

The strength of the relationship between two variables can be expressed numerically using a correlation coefficient. 
Pearson's product-moment correlation coefficient is +1 if two variables vary together exactly. In general, a positive 
correlation coefficient shows that the two variables are positively correlated, where high values of the first variable 
are associated with high values of the second. A negative correlation where high values of the first variable are 
associated with low values of the second and vice versa is shown by a negative correlation coefficient. A value of-1 
is obtained for a perfect negative correlation, and a value of 0 is obtained when the two variables are not correlated 
at all.

To calculate Pearson's correlation coefficient from raw scores, the following quantities must first be found: the sum 
of all values of the first variable X, the sum of all values of the second variable Y, the sum of all squares of X, the 
sum of all squares of Y, and the sum of the products XY over all data pairs. The correlation coefficient r is then

To use this formula we must assume that the scales on which X and Y are measured are truly continuous, and the 
scores on the two variables, X and Y are
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independent. The data should be normally distributed, and the relation between X and Y must be linear. More 
advanced techniques exist to describe curvilinear relations.

The weaker the correlation between X and Y, the greater the degree of error in regression predictions. This may be 
described using the quantity standard error of estimate (SEE), which is equal to the standard deviation of Y 
multiplied by the square root of 1-r2, where r is the correlation coefficient. r2 is the proportion of variance in one 
variable accounted for by the other variable, and thus 1-r2 is the proportion of variance in one variable due to chance 
rather than the other variable.

4.3.2 Use of Pearson's productmoment correlation coefficient in corpus linguistics

Xu (1996) performed a comparison of the lengths of English words in characters with the numbers of characters in 
their translations into Chinese, using a bilingual English/Chinese parallel corpus. This data is shown in Table 1.17. 
The lengths of the English words appear in the column headed X while the lengths of the Chinese sentences appear 
under column Y.

S X Y X2 Y2 XY

1 1 2 1 4 2

2 2 1 4 1 2

3 2 2 4 4 4

4 3 1 9 1 3

5 3 2 9 4 6

6 4 2 16 4 8

7 6 2 36 4 12

8 6 3 36 9 18

9 7 1 49 1 7

10 7 2 49 4 14

11 8 2 64 4 16

12 9 2 81 4 18

13 10 2 100 4 20

14 11 2 121 4 22

15 11 3 121 9 33



Total 90 29 700 61 185

Table 1.17 
Correlation between the lengths of English and Chinese words 

 

Inputting these totals into the equation, we obtain:
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Thus, we have shown that there is a small positive correlation between the number of characters in an English word 
and the number of characters in its Chinese translation. We now wish to know whether there is a significant 
correlation between these two variables.

Appendix 8 shows the critical values of r according to the number of pairs of observations. In this study there were 
15 pairs of observations, yielding a critical value of 0.441. To show significance at the 5 per cent level, the 
calculated value of r must be equal to or greater than the critical value. Since the calculated value of r is only 0.39, 
we must conclude that the correlation between the two variables under study is not significant at the 5 per cent level. 
A more extensive account of Xu's experiments is given by McEnery, Xu and Piao (1997).

4.3.3 Spearman's rank correlation coefficient

While Pearson's correlation coefficient requires the use of continuous data, Spearman's correlation coefficient may 
be used with non-continuous variables. Spearman's rank correlation coefficient is used when both variables under 
test are ordinal and thus may be ranked. If one variable is ordinal and the other is continuous, the continuous data 
may be treated as ordinal by converting it to ranked data. The formula for Spearman's rank correlation coefficient is 
as follows:

4.3.4 Use of Spearman's rank correlation coefficient in corpus linguistics

McEnery, Baker and Wilson (1994) performed various experiments with the Cyber Tutor system, which uses 
annotated corpora as the basis for computer-aided tuition in assigning parts of speech to words. In one of these 
experiments, they wished to determine the correlation between the number of words assigned a part of speech in a 
set time by each of their subjects and the percentage correct. Table 1.18 shows a small unrepresentative sample of 
data which was obtained for the experiment. In column X we have the number of words assigned a part of speech by 
each subject in two hours, and in column Y we have the percentage correct. The values in columns X and Y are 
ranked, where the highest value is given a rank of 1, the next highest value is given a rank of 2 and so on. The 
resulting ranks are shown in columns X' and Y' respectively. In column d, the difference between the ranks in 
columns X' and Y' is shown, and the squares of these values are shown in column d2.
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S X Y X' Y' d d2

1 894 80.2 2 5 3 9

2 1190 86.9 1 2 1 1

3 350 75.7 6 6 0 0

4 690 80.8 4 4 0 0

5 826 84.5 3 3 0 0

6 449 89.3 5 1 4 16

Sum = 26

Table 1.18 
Correlation between speed and accuracy in a part of speech assignment test

 

When the values in column d2 are all added together, the total is 26, which is the  value required by the formula 
for Spearman's coefficient of correlation. The number of subjects, N, is 6. Spearman's correlation coefficient, p, is 
calculated as follow:

Appendix 9 shows the critical values of the Spearman rank correlation coefficient according to the number of pain of 
observations. For six pairs of observations at the 5 per cent significance level, the critical value is 0.829. The value 
of p obtained in this experiment was only 0.26, less than the critical value. So, although the two factors under 
investigation were shown to be positively correlated, this correlation was not found to be significant at the 5 per cent 
level. 4

4.4 Regression

In most quantitative investigations, there is one variable called the dependent variable that we want to explain, and 
another variable that we believe affects the first called the independent variable. In an experiment, the conditions 
that are varied by us are the independent variables, while we measure the response of the dependent variables. 
Regression is a way of predicting the behaviour of the dependent variable according to the values of one or more 
independent variables. In simple regression, we predict scores on one dependent variable on the basis of scores in a 
single independent variable. Regression and correlation are related, so, for example, the closer the correlation is to 
plus or minus 1, the more accurate regression will be.

In order to predict the value of the dependent variable using regression, it is necessary to know:

1. the mean value of the independent variable scores ( )

2. the mean value of the scores for the dependent variable ( )

3. the test value of the independent variable (X)



4. the slope of the straight line which would pass most closely to the points on a graph where the two variables are 
plotted against each other (b).
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This straight line which best approximates to the data is called the regression line, and is the line that results in the 
smallest mean of the sum of squared vertical differences between the line and the data points.

The correlation coefficient is equal to the slope of the line of best fit in a z-score scatter plot, where the two variables 
are plotted together using axes where the units are standardized z scores. One way of calculating the slope of the 
regression line is thus to multiply the correlation coefficient by the standard deviation of the dependent variables (Y) 
over the standard deviation of the independent variables (X). If these correlation coefficients are not known, the 
slope (b) of the regression line can still be computed using raw score data using the following formula:

Once the slope b has been calculated,  (the predicted value of Y) can be found by the formula

4.4.1 Use of regression in corpus linguistics

Brainerd (1974) formed a sample corpus by selecting at random seven sections of Chinese text from the Tao Te 
Ching. Table 1.19 shows the section number, the length of that section in characters (X) and the number of different 
Chinese characters used in that section (Y). In order to assist with the calculation of b, the slope of the regression 
line, the quantities X2 and XY are also tabulated, and the sums over the entire data set for X, Y, X2 and XY are also 
given.

Section X Y X2 XY

1 22 20 484 440

2 49 24 2401 1176

3 80 42 6400 3360

4 26 22 676 572

5 40 23 1600 920

6 54 26 2916 1404

7 91 55 8281 5005

Sum = 362 212 22758 12877

Table 1.19 
Lengths and number of characters employed in seven sections of a Chinese text

 

Incorporating these values into the slope equation given in the previous section gives us the following formula:
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We can use the formula  to calculate where the regression line crosses the y-axis. If we call this 
point a, then the complete formula for regression will be in the form . In order to find point a, we must 

work out what  would be if X were zero. Using Brainerd's data, the mean of X (or ) is 362/7 = 51.7, and the 

mean of Y (or Y ) is 212/7 = 30.3. Thus, if X is 0, .This provides the 
complete formula for the regression line, .

4.4.2 Multiple regression

In simple regression we use the value of a single independent variable to predict the value of the independent 
variable, while multiple regression is used when we want to discover how well we can predict scores on a dependent 
variable from those of two or more independent variables. In the process of multiple regression, we estimate how 
much relative weight should be assigned to each of the independent variables that may affect the performance of the 
dependent variable. To perform multiple regression, the variables under study should either be interval or truly 
continuous and they should be related linearly. At least 30 data points are required for an accurate analysis. 
Although the calculations for multiple regressions tend to be relatively simple in concept, they are time-consuming 
to do by hand, so multiple regression is generally performed using statistical packages on the computer. According 
to Hatch and Lazaraton (1991), analysis of variance and multiple regression are probably the two most used 
statistical procedures in applied linguistics research.

For simple regression, the formula for the regression line was . For basic multiple regression, we 

predict  using two independent variables (X1 and X2) at once, using the formula . b1 and 
b2 are the regression weights, analogous to the slope in simple regression, as described in Section 4.4. When X1 is 
held constant, b2 is the change in Y for a unit change in X2. Similarly, b1 is the effect of X1 on Y, when X2 is held 
constant.

In order to make the magnitude of weights correspond with the actual effects of each independent variable on the 
dependent variable, we must first standardise all the variables used in the multiple regression, by converting them to 
z scores. The use of z scores means that the average score in each case is zero, and thus a can be eliminated from the 
equation.

In order to calculate weight b1, the correlation coefficients between each pair of variables in the study must first be 

found, as described in Section 4.3. These coefficients are called  (the correlation between Y and X1),  and 

. The formula for b1 is
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and the formula for b2is exactly analogous.

Once the multiple regression fit has been produced, it can be evaluated with a multiple correlation coefficient 
represented by R The multiple correlation is the correlation between the observed Y values and those predicted from 
two or more X variables. If R is 0, there is no relationship between X1, X2 and Y, while if R is 1, X1and X2 predict Y 
exactly. Unlike the simple correlation coefficient r, the multiple correlation R cannot be negative. The squared 
multiple correlation, R2, shows the amount of variation in the independent variable that is produced by a linear 
combination of the independent variables. The statistical significance of R2, which shows how confident we can be 
in rejecting the null hypothesis that X1 and X2 have no linear effects on Y, is found using the following formula:

N is the number of items in the data set, and k is the number of independent variables in the model. Critical values of 
F arc given in Appendix 6. Multiple linear regression with three independent variables is very similar to regression 
with two independent variables. The line of best fit using three predictors is given by

4.4.3 Use of multiple regression in corpus linguistics

In Tottie's (1991) analysis of negation in English, a corpus of written English was employed. This comprised those 
sections of the Lancaster-Oslo/Bergen corpus devoted to press, popular lore (including magazines), belles lettres, 
biography, essays, and learned and scientific writings. No fictional material was used. Tottie used the VARBRUL 
(Variable Rule Analysis) program which allows regression to be performed using frequency data. The occurrence 
negation using the word no (no-negation) was contrasted with the occurrence of not forms of negation. An example 
of a negated clause with co-ordinated modifiers would be 'those children who will not go on to a grammar or senior 
technical school', while a contrasted negated clause would be exemplified by 'Peter saw no elephants but Mary saw 
many'. The likelihood of encountering no-negation depended on whether the negation occurred in contrastive and/or 
co-ordinated structures. The relationship between the three factors was expressed using the regression equation

Probability of no-negation = 0.310 Contrastive + 0.696 Co-ordination

Thus, the presence of co-ordination is more than twice as important as the presence of contrast in the prediction of 
whether no-negation is preferable to not-negation.
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5 Loglinear Modelling

5.1 Overview

The aim of loglinear analysis is the analysis of frequency data as it appears in cross tabulations or contingency 
tables. When working with frequency data, the chi-square test is a good technique for modelling a two-variable 
table. However, as soon as more variables are introduced, there are many more relationships to be considered. In a 
three-dimensional table there may be associations between each of the pairs of variables as well as interaction 
between all of them.

Interaction between two independent variables is said to occur when the degree of association between those two 
variables differs between the categories of a third. Gilbert (1993) provides a UK example that there is interaction, if 
the magnitude of the association between social class and home tenure among those voting Conservative is not the 
same as the magnitude of the association between these two variables among those voting Labour. 5 In such a case 
the probability of voting Conservative depends not only on the independent effects of home tenure and class position 
but also on the effect of these influences in combination over and above their separate influences.

The chi-square test cannot handle designs with more than two independent variables. Nor can it give information 
about the interaction of variables, show which of these variables best predicts the actual distribution, or be used to 
test causal claims. However, loglinear analysis can do all these things for frequency data. It allows us to consider 
how many of the independent variables and interactions affect the dependent variable.

In an example given by Hatch and Lazaraton (1991), loglinear analysis is used to examine how a nominal variable 
such as monolingualism/bilingualism affects the odds that a student will or will not need to take a remedial course. 
These odds are calculated by dividing the frequency of being in one category by the frequency of not being in that 
category. In order to test whether these odds, called the marginal odds, are affected by the independent variables, we 
calculate whether the chances of being required to take remedial classes change according to whether the test subject 
is monolingual or bilingual. The data in their example shows that the odds of not requiring remedial classes are 1.57 
(312/198) among bilingual students and 3.14 (694/221) among monolingual students, yielding an odds ratio of 
(3.14/1.57) = 2.

The term model is used by Hatch and Lazaraton to represent a statement of expectations regarding the categorical 
variables and their relationships to each other. For example, the above data suggests a model where +/- bilingualism 
(variable A) is related to +/- remedial course requirement (variable B). Using loglinear notation, this is model {AB}.

Analysing the data to examine the effect of a new variable, socio-economic status (SES), might show that the odds 
depend on SES as well as bilingualism.This suggests that one might propose a model that assumes it is the 
interaction
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between SES and bilingualism that influences the odds of needing remedial instruction. This model can then be 
tested against one that links the need for remedial instruction with bilingualism and SES, but does not assume any 
interaction between them. If the odds ratio in the example above does not vary with SES, then there is no interaction 
in the model, otherwise we can see the effect of the interaction between SES and bilingualism.

In loglinear analysis the various competing models are compared with the observed data. The so-called saturated 
model contains all possible effects of the variables occurring in the analysis, and of all the possible combinations of 
these variables. This model always fits the observed data perfectly, but in loglinear analysis the plausibility of less 
extensive models involving fewer variables and interactions is also examined, to see if any of these simpler models 
also fit the data acceptably well. The most parsimonious model, namely the one with the fewest variables and/or 
fewest interactions, that successfully predicts the observed odds is the one selected.

Loglinear analysis is used to construct the hypothetical frequency table that would be obtained if only those 
relationships specified in a model were taken into account. The resulting table is then compared with the actual data 
table to see whether the model is a good one. One way of generating estimates of the expected cell frequencies of 
each model is to use a method known as Iterative Proportional Scaling (IPS), which can be performed using the 
Statistical Package for the Social Sciences (SPSS) package. This will be described in detail in the following section. 
The Generalised Linear Interactive Modelling (GLIM) program uses an alternative and more powerful method 
producing similar results. Once GLIM has produced the expected frequencies for the model, these are entered into 
the program to produce effect estimates (symbolised by r or λ) for each of the variables and their interactions.

In testing the models, some computer packages with loglinear programs produce a chi-square statistic while others 
print out a likelihood ratio L2. SPSS can produce either the log-likelihood chi-square (also called G2 or the Pearson 
chi-square (the ordinary chi-square). The two statistics are almost the same, especially with large samples. GLIM 
displays the G2 statistic under the name scaled deviance. The less the L2 or chi-square (relative to the degrees of 
freedom) the better the model accounts for the observed data. This contrasts with the usual interpretation of chi-
square, where large values tend to denote significance, but is in accordance with the fit statistics found in factor 
analysis.

Since we are looking for the single model that includes all the variables and interactions required to account for the 
original data, there is a danger that we will select a model that is 'too good'. Such a model would include spurious 
relationships that in reality arise solely from normal sampling error. This is the case for the saturated model, which 
produces a perfect fit, and other models which produce a p value close to 1 .The aim is to select a model that closely 
fits the data but not so closely that it may include error relationships, and thus one
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generally looks for a model with a p value between 0.1 and 0.3 to achieve both a good fit and a parsimonious 
solution.

5.2 Iterative proportional scaling

In this section, the use of iterative proportional scaling (IPS) will be described by examining the data of de Haan and 
van Hout (1986), reproduced in Table 1.20 below. De Haan and van Hour analysed 1826 noun phrases (NP) with 
post modifying clauses (PMC) from a large text corpus, and classified them according to function (subject, object or 
prepositional complement), position (final or non-final) and length in words (1 to 5, 6 to 9 and greater than 9). They 
performed a loglinear analysis of this data to discover the relationships between NP function and position and length 
of the PMC.

Function 1-5 words 6-9 words >9 words

(a) Position final

Subject 19 21 33

Object 173 128 142

Prepositional Complement 270 284 277

(b) Position non-final

Subject 156 115 84

bject 15 8 1

Prepositional Complement 43 31 26

Table 1.20 
Distribution Of NB functions and clause positions in the three length classes

 

If there is interaction between function, position and length, then the strength of the association between function 
and position depends on length. The association between function and length depends on position, and the 
association between position and length depends on function. We may discover whether the data in Table 1.20 
shows interaction by constructing a model table starting from the assumption that function, position and length were 
associated but did not interact. This model table which shows no interaction can be compared with the actual data in 
Table 1.20. If the model and data tables are similar, we shall have shown that there is indeed no interaction in the 
data.

Table 1.20 is three-dimensional, and thus we may construct marginal tables 6 not only for each variable on its own, 
but also marginal tables showing the relationships between pairs of variables, as shown in Table 1.21. The marginal 
table of function by position was found by summing the data for function by position in the original data table over 
all word lengths, and the other marginals were found by similar means.
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Final Non-final

Subject 73 351

Object 443 24

Prepositional complement 831 100

(a) Marginal table of function by position

1-5 words 6-9 words >9 words

Subject 175 136 117

Object 188 136 143

Prepositional complement 313 315 303

(b) Marginal table of function by length

1-5 words 6-9 words >9 words

Final 462 433 452

Non-final 214 154 111

(c) Marginal table of position by length

Table 1.21 
Marginal tables for the distribution of NP functions

 

A model of no-association is constructed by fixing the marginals to be the same in both data and model tables. The 
simplest algorithm for doing this is iterative proportional scaling. The value of iterative models is that they can be 
used even when there is no exact formula for reaching a solution as is the case here. In an iterative procedure an 
initial estimate of the solution is made, and the estimate is then tested to see whether it is acceptably close to the 
solution. If not, the estimate must be refined. The testing and refinement phases are repeated until a solution has 
been reached.

In the process of fitting models, an arbitrary initial estimate of the model table frequencies is made. This estimate is 
tested by generating one of the marginal tables using the initial data in the model table, and comparing it with the 
marginal table produced for the actual data. If these do not match, the model table frequencies are updated using a 
standard formula (described later in this section) to bring the values closer to the observed marginal table. As the 
iterative process 'continues, the model table is matched and updated against each of the marginal tables in turn. The 
first estimate is to set every cell frequency in the model table equal to one. From this first estimate, the function by 
position marginal is calculated, and is compared with the corresponding data marginal alongside it, as shown in 
Table 1.22.



The estimated function by position marginal from first guess and from data marginals are clearly quite different, so 
this first solution is not satisfactory and must be refined. This refinement is performed by proportionately scaling the 
frequencies in the model table, according to the following formula:
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Function by position marginal

First guess at a solution From first guess From data

1 1 1 1 1 1 3 3 73 351

1 1 1 1 1 1 3 3 443 24

1 1 1 1 1 1 3 3 831 100

Table 1.22 
IPS on the data in Table 1.21, with labels omitted

 

For example, the frequency of the second guess table's top right corner entry is  Performing the 
scaling for all the table frequencies yields the entire second guess table. By an analogous process, the function by 
length marginal is used to yield the third guess. The third guess is compared with the remaining marginal, position 
by length, to yield the fourth guess, and the fourth guess is compared with the function by position marginal just like 
the first. In fact, the order in which the marginal tables are used has no effect on the final result. The iterative 
process continues until all three marginals from the solution match the marginals from the data sufficiently closely 
for any differences to be unimportant, which is almost always achieved after 3 or 4 cycles.

The final model table has the same marginals as the data table and is the table of frequencies that would be obtained 
if there were no interaction between function, position and length. If the model table matches the data table exactly 
then there is no interaction. If the frequencies in the two tables differ, then there must be some degree of interaction, 
which must be quantified using statistics related to the chi-square measure, as described in the following section.

In the example above, a model table was developed starting from the assumption that all three variables were 
associated, but did not interact. The most obvious model to examine next is one that involves not three but two 
associations, again with no interaction. For example, we could try fitting the model in which the association between 
length and function were omitted. This is done by performing IPS using only those marginals that correspond to the 
relationships included in the model to be examined, namely length by position and position by function. These 
marginals are fixed to be identical to those in the observed data table. If this simpler model can be shown to fit the 
observed data, we can then try removing the length by position relationship. In this way, we can systematically work 
towards the simplest model that fits the data, omitting all relationships that do not contribute to the observed data. 
The ideas described for a three-dimensional loglinear analysis can be extended for four and higher dimension tables. 
The statistical methods used in this model selection process, as used by de Haan and van Hout, are described in the 
following section.
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5.3 Selection of the best model

Altogether 19 different models can be fitted to a three-dimensional cross-tabulation for variables A, B and C. The six 
most important are  (interaction),  (no interaction, pairwise association), 

 (no interaction, no association between A and C), ,  and 
 (no association). The interaction model for a three-dimensional table always fits the data perfectly, 

and is called the saturation model. As described in the previous section, the four association models are found by 
IPS. The no association model table entries are found using the found using the formula

The marginals that can be derived from a particular marginal are known as its lower-order relatives, where, for 
example, A is a lower-order relative of . In hierarchical models A is automatically added to the model if  
is specified whenever iterative proportional scaling is used. The question of whether one model fits better than 
another is addressed by quantifying the fit of a model and comparing it with the fit of rival models using a test of 
significance. The indicator of fit used to assess loglinear models is a measure related to the chi-square measure 
called the log likelihood ratio statistic G2 (G-square, G score or log likelihood), found by using the following 
formula:

where xij are the data cell frequencies, my are the model cell frequencies, loge represents the logarithm to the base e, 
and the summation is carried out over all the cells in the table. G-square has a distribution that is very similar to that 
of the chi-square statistic, so G-square probabilities can be looked up by consulting a table of the theoretical 
distribution of the chi-square. Usually the computer program that calculates the model table will also provide the 
required number of degrees of freedom, according to the rationale provided by Gilbert (1993, p. 73):

The more constraints a model has to satisfy, the lower the number of degrees of freedom. For loglinear 
models, the constraints axe those marginals that are required to be identical in the model and the data. The 
more marginals specified in a model, the fewer the resulting degrees of freedom. In fact, a model has 
degrees of freedom equal to the number of cells in the table minus the total number of degrees of freedom 
for each of its fitted marginals. Similarly, each marginal table has degrees of freedom equal to its number 
of cells less the total degrees of freedom of its marginals.

A perfectly fitting model would have yielded a significance level of 100 per cent, as is the case for the interaction or 
saturation model. A high value of
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G-square and corresponding zero significance of the simplest models shows that one or more relationships that exist 
in the data have been omitted. As further relationships are added to the model the degree of fit improves, leaving us 
to decide which model should be adopted as the simplest one that fits the data adequately. The conventional standard 
quoted by Gilbert is that models with a significance level of 5 per cent or more are judged to fit well. Sometimes 
there is a degree of subjectivity in the best model assessment; for example, where a very simple model may achieve 
5 per cent significance but a slightly more complex one may have much greater significance. De Haan and van Hout 
found that almost all the models they tested had very high chi-square values and hence very low probability. Their 
best model was the one in which all two-way interactions were present. This had a chi-square value of 6.5 for four 
degrees of freedom, giving a probability of 16.5 per cent, which was deemed acceptable.

5.4 Example of the use of loglinear analysis ha corpus linguistics: gradience in the use of the genitive

Leech, Francis and Xu (1994) performed a loglinear analysis of the data in a computer corpus to perform an 
empirical analysis of non-discrete categories in semantics, and in particular to demonstrate the phenomenon of 
gradience. Gradience means that members of two related categories differ in degree, along a scale running from 'the 
typical x' to 'the typical y', rather than always being assigned entirely to one category or another. The concept of 
gradience allows one to express the likelihood of using one form over the other in terms of probabilities rather than 
citing a rigid rule to always use one form in a given context.

The study of Leech, Francis and Xu is based on the analysis of the one-million-word Lancaster-Oslo/Bergen (LOB) 
corpus, which is a balanced corpus of early 1960s modern written British English. To illustrate their method of 
investigating and measuring gradience, they considered the case of the English genitive construction (as in the 
president's speech) and compared it with the frequently synonymous of construction (as in the speech of the 
president)These two constructions may be distinguished by the formulae [X's Y] and [the Y of X]. The factors they 
were seeking in their analysis were those that determine the native speaker's choice between one form rather than the 
other. Grammarians had previously identified a number of critical factors, including the semantic category of X, the 
semantic relation between X and Y and the style of text in which the construction occurs, so these factors were 
employed as the basis of the analysis.

The original aspect of their study was that the statistical technique logistic regression was employed. This is a type 
of loglinear analysis where there is one dependent variable which is to be explained by other variables. This enabled 
the comparison between the various theoretical models in which the previously identified factors were either present 
or absent, and associated or otherwise, so
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that the model that best fitted the classified corpus data according to a statistical test of significance could be found.

As a result of this study, Leech, Francis and Xu were able to derive from the corpus the optimal values for the factors and 
their subfactors (levels on an interval scale) as well as interaction effects between them. This made it possible to determine 
which of the factors and which of the levels within the factors were the most important in determining the choice between 
the genitive and the of construction. It was also possible to place the factors and levels in an order of importance and to 
discover whether any factors or levels were redundant to the analysis.

To examine the effect of genre, they used parts of the sections in the corpus for journalistic writing, scientific and learned 
writing, and general fiction. The semantic categories of X they employed were human nouns, animal nouns, collective 
nouns, place nouns, time nouns, concrete inanimate nouns and abstract nouns. Finally, the types of semantic relation 
between X and Y considered were possessive, subjective, objective, origin, measure, attributive and partitive. The basis for 
the model was the calculation of the odds in favour of the genitive, i.e., Prob [X's Y]/Prob [they of X] for any combination 
of factors and subfactors.

As a result of this analysis they produced a three-dimensional matrix with each cell containing a two-part frequency count 
in the form frequency-of-genitive/total-frequency. For example, the cell devoted to the observed proportion of the genitive 
in journalistic style for the possessive relation and the human category is 46/72. In order to process this data for input to 
the GUM statistical package, the overall three-dimensional frequency table was prepared as a set of three two-dimensional 
tables, one for each genre of text (journalistic, learned or fictional), each containing the observed proportion of the genitive 
according to semantic category and semantic relation. The table for journalistic style is reproduced in Table 1.23.

H A O P T C B Total

Possessive 46/72 0/0 8/33 16/43 0/0 0/28 1/57 71/233

Subjective 36/50 0/0 4/13 0/8 0/0 0/7 0/28 48/106

Objective 0/13 0/2 0/6 0/2 0/0 0/25 0/54 0/102

Origin 36/48 0/0 4/6 0/0 0/0 0/0 0/0 40/54

Measure 0/0 0/0 0/0 0/0 7/19 0/0 0/0 7/19

Attributive 3/7 0/0 3/7 0/3 0/0 0/12 0/21 6/50

Partitive 2/9 0/0 3/13 0/3 0/0 0/24 0/20 5/69

Total 123/199 0/2 22/68 24/59 7/19 0/96 1/180 177,633

Table 1.23 
Observed proportion of the genitive in journalistic style
 

GLIM was used to fit a selection of statistical models to the observed data. A backward elimination procedure was 
adopted, with the all two-way interaction model being fitted at the initial stage. At each subsequent stage, the least
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important variable or interaction was selected and removed from the model using GLIM scaled deviance (likelihood 
ratio statistic) as the criterion for comparing nested models. Starting from the all two-way interaction model, first the 
category by style interaction was removed, then the relation by style interaction, and finally the relation by category 
interaction. The scaled deviance obtained in each case is shown in Table 1.24, as is the difference in scaled deviance 
in each case compared with the previous model. A difference in scaled deviance between two models will have a chi-
square distribution on their difference in degrees of freedom if the term removed is unimportant. This means that the 
p value in the final column will be less than 0.05 if the term removed is important. The procedure was continued 
until all remaining variables were significant.

Model Deviance df Difference in scaled deviance from 
previous model

Difference in df p value

a + b + c + d 7.94 29

a + c + d 20.26 39 12.32 10 0.2642

a + d 35.14 51 14.88 12 0.2481

a 63.01 71 27.87 20 0.1125

Table 1.24 
Analysis of deviance table
 

In order to assess the fit of the simplest model, the scaled deviance from this model of 63.01 on 71 degrees of 
freedom was compared with the chi-square distribution. The critical level of chi-square at the 5 per cent significance 
level is 91.67, and since 63.01 is substantially below this figure, the model was deemed to fit well. It was also 
clearly the most parsimonious, and hence was accepted as the final model.

We can assess the importance of each of the terms in the final model by consultation of Table 1.25. All the factors 
are highly significant, and are very important in predicting the proportion of genitive constructs. However, when 
category is excluded from the model, the scaled deviance changes by the greatest value, 361, making category the 
most significant term, followed by relation then style.

Term deleted Change in deviance

Style 70.28

Relation 88.33

Category 361

Table 1.25 
Effect of deleting terms from the final model

 
  
< previous page page_45 next page >
 

If you like this book, buy it!

http://www.amazon.com/o/asin/0748610324/ref=nosim/duf-20


< previous page page_46 next page >
Page 46

To produce the final model, the relative effects of each of the subcategories of the three main effects of style, 
relation and category were found using the logit function. If we define Pyk to be the probability of obtaining the 
genitive construct for category i, relation j and style k, then the model can be written in the form below:

Using this formula with the data in the original data matrix, estimates for the relative effects of each of the 
subfactors in the model were calculated. The nature of this equation gives the name to loglinear analysis: the 
equation yields the log odds ratio and is linear in that it is the sum of unsquared terms. More complex formulae exist 
for models where association and interaction occur. Estimates for the various levels of the factor category are shown 
in Table 1.26, showing that within the category factor, the ordering of levels in terms of the fitted probabilities of 
choosing a genitive in preference to an of construction is as follows: X is human, X refers to time, X is a place, X is 
an organisation, X is an animal, X is abstract, X is concrete and inanimate. Similar analyses can be performed to 
obtain the effect estimates for relation j and style k.

Parameter Name Description Estimate

K Constant 0.33

Category(l) Human 0

Category(2) Animal - 1.73

Category(3) Organisation -1.38

Category(4) Place -0.87

Category(5) Time -0.85

Category(6) Concrete - 13.38

Category(7) Abstract -5.80

Table 1.26 
Estimates of parameters in the final model

 

The net result of this analysis was to produce conclusions that could only have been arrived at by empirical means, 
requiring the use of a corpus. It was shown that all three factors of literary style, noun category and relation are 
important factors in determining the choice between the genitive and the of construction. The order of significance 
of the factors is that semantic class is most significant, followed by style or text type with the relation of X to Y least 
significant. It was possible to obtain effect estimates for the levels of all three factors, showing, for example, that the 
genitive is preferred to of more if X is human than if X is concrete and inanimate. A similar analysis not tabulated 
here showed that the genitive is preferred to of first in fictional texts, then journalistic texts, and least in learned texts.
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6 Bayesian Statistics

Each of the statistical techniques described so far in this chapter employ the notion of 'absolute probability', but 
when using Bayesian statistics we discuss the 'conditional probability' of a proposition given particular evidence. In 
other words, we talk about belief in a hypothesis rather than its absolute probability. This degree of belief may 
change with the emergence of new evidence. Bayesian statistics is popular in the field of artificial intelligence, 
especially in expert systems; and although it is not a statistical test as such, it has a bearing on corpus linguistics. As 
will be described in Chapter 5, Section 2.6.1, Mosteller and Wallace (1964; see Francis 1966) used Bayesian 
statistics in a celebrated study of disputed authorship.

According to Krause and Clark (1993), Bayesian probability theory may be defined using the following axioms: 

Firstly , the probability of a hypothesis given the evidence, is a continuous monotonic function 7 in the range 

0 to 1. Secondly , meaning that the probability of a true hypothesis is one. The axiom 

 means that either the hypothesis or its negation will be true. Finally, the equality 

 gives the probability of two hypotheses being simultaneously true, which is equal to 
the probability of the first hypothesis, given that the second hypothesis is true, multiplied by the probability of the 
second hypothesis.

From this fourth axiom we can update the belief in a hypothesis in response to the observation of evidence. The 

equation  means that the updated belief in a hypothesis h on observing evidence e is 

obtained by multiplying the prior belief in h,p(h), by the probability  that the evidence will be observed if the 

hypothesis is true.  is called the a posteriori probability, while p(e) is the a priori probability of the evidence. 
Thus, conditional probability and Bayesian updating enables us to reason from evidence to hypothesis (abduction) as 
well as from hypothesis to evidence (deduction). If an item of evidence influences the degree of belief in a 
hypothesis, we have a causal link. The combination of such causally linked events enables one to build entire 
Bayesian networks. This enables probabilistic knowledge not to be represented as entries in a large joint distribution 
table, but rather by a network of small clusters of semantically related propositions.

Another consequence of the fourth axiom is the chain rule. The probability of events Al, to An all occurring (the joint 

probability distribution) is denoted , and is equal to 

 For example, the probability of 
encountering three words in a sequence is equal to the probability of finding the third word given the evidence of the 
first two words, multiplied by the probability of encountering the second word given the evidence of the first word, 
multiplied by the probability of the first word. Lucke (1993) describes how the chain rule is used in conjunction with 
the EM algorithm, to be described in Chapter 2, Section 2.10.3, where empirically observed data for the parts of 
speech frequencies for
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sequences of words are re-estimated for new texts.

The chain rule formula may be simplified if we know that one of the events in Al to An has no effect on our belief in 
the other (i.e., the two propositions are conditionally independent). If event A is conditionally independent of event 

B, given evidence C, then . One example of conditional dependence is seen in the 
phenomenon of 'explaining away'. If event A causes event C, and event B also causes C, then if C occurs the 
observation of A will weaken our belief that B occurred. For example, if rain and a water sprinkler both cause a wet 
lawn, and the lawn is wet, then finding that the sprinkler has been left on will weaken the belief that it has been 
raining. Here A (rain) and B (the water sprinkler) are marginally independent, since they do not affect each other 
directly, but are conditionally dependent, since the observation of one affects the degree of belief in the other. Since 

A and B are marginally independent, we have . The converse is true when we consider a case where 
predisposing factor A causes disease B which has associated symptom C. Once C has been confirmed, the 
observation of B has no further influence on our belief in A. Thus A and B are conditionally independent given C.

Krause and Clark state that, in general, the generation of a Bayesian inference model involves two steps. First the 
relevant qualitative inference network must be constructed, and then the relevant prior and conditional probabilities 
within this structure must be elicited.

6.1 Use of Bayesian statistics in corpus linguistics

Mitkov (1996) used Bayes's theorem to examine the problem of pronominal anaphor resolution. One hypothesis 
commonly used in anaphor resolution is that the focus or centre of a sentence or clause is the prime candidate for 
pronominal reference. Mitkov's approach was to use the Bayesian statistics approach for tracking the centre of a 
sentence by repeatedly updating the current probability that a certain noun or verb phrase is or is not the centre in the 
light of new pieces of evidence. The form of Bayes' theorem employed was as follows:

Mitkov allowed only two possible hypotheses for a given noun or verb phrase  either it was the centre of its sentence 
or phrase or it was not. These two hypotheses were denoted Hy and Hn respectively, and either one can take the 
place of Hk in the above formula. Empirical observation of a corpus of computer science texts enabled the 
development of sublanguage dependent rules for centre tracking. Examples of such rules were 'Prefer NPS 
representing a domain concept to NPS which are not domain concepts' and 'If an NP is repeated throughout the 
discourse section, then consider it as the most probable centre'. If any of these rules applied to the noun or verb 
phrase in
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question, this was regarded as a piece of evidence. The presence or absence of such a piece of evidence was called a 
symptom, and A was used to denote the presence of a particular symptom in the sentence or phrase of interest.

 was the a priori probability of symptom A being observed with a noun or verb phrase which is the centre. 

Conversely,  is the a priori probability of the symptom being observed with a phrase which is not the 

centre. In Mitkov's system, the  and  values are represented by empirically discovered weight 
factors associated with each rule called Py and Pn respectively. The normalising factor on the bottom line of the 

equation,  is found by adding  to . The a posteriori 

probability  is the new estimate of the probability that the verb or noun phrase is the centre, given the old 
probability and some new piece of evidence. Thus, in each case, Mitkov's system is to start with the initial 
probability of the phrase being the centre, then to consider the symptoms in turn. For each symptom the current 
probability is updated, taking into account whether the sentence exhibited that symptom and the weight factors Py 
and Pn. Mitkov tested his system for anaphor resolution, and found that results improved when traditional linguistic 
approaches to centre tracking were augmented with Bayesian statistical information.

7 Summary

In this chapter we have looked at ways of describing sets of observed data such as linguistic features in a corpus. 
These descriptive statistical techniques were the three measures of central tendency, mean, median and mode which 
each assign a value to the most typical member of the data set. We discussed the nature of the normal distribution, 
with, typically, many data items clustered around its mean value and relatively few far above or below the mean. 
The standard deviation was introduced as a measure of variability of a data set. The z score is a standardised score 
which converts a data score expressed by any units to a number of standard deviations. In the section on hypothesis 
testing we saw how statistical tests involve a comparison between observed data and the null hypothesis which states 
that any difference between data sets is due to chance variation alone.

In order to compare data groups, a variety of parametric and non-parametric tests were described. A parametric test 
such as the t test which is used for the comparison of two groups assumes that both groups are normally distributed, 
being entirely described by the mean and standard deviation, and that the data must have at least an interval level of 
measurement. When these assumptions do not hold, non-parametric tests are used. Two forms of the t test exist; one 
where two different groups are compared, and one where the same group is compared at two different time intervals. 
Similarly, we may distinguish non-parametric tests for the comparison of independent groups such as the Mann-
Whitney U test and those used for repeated measures of the same group such as the sign
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test. The median test is used rather than the Mann-Whitney U test when the data sets contain extreme scores, so that 
the median becomes the best measure of central tendency. The sign test is used for data on an ordinal scale, while 
the Wilcoxon matched pairs signed ranks test is used when the data is measured on an interval scale. ANOA, or the 
analysis of variance, is the test of choice when three or more groups are to be compared. The chi-square test is used 
for the comparison of frequency data. Kilgarriff has shown that this test should be modified when working with 
corpus data, since the null hypothesis is always rejected when working with high-frequency words.

The degree to which two variables vary in accordance with each other is shown by measures of 
correlation  Pearson's product-moment correlation for continuous data and Spearman's coefficient for ranked data. 
Regression shows how the value of a dependent variable is determined by the value of a single independent variable, 
while multiple regression shows how the value of the dependent variable is determined by more than one 
independent variable. This chapter then gives an account of another multivariate technique, namely loglinear 
analysis. Here theoretical models of the data are produced by the technique of Iterative Proportional Scaling (IPS) 
according to whether the variables are interacting, associated or without effect. These models are compared with 
actual data using measures such as the G-square statistic, so that the theoretical model that most accurately fits the 
data can be found. The chapter concludes with an account of an alternative approach to statistics. While all the other 
techniques described in this chapter are concerned with absolute probabilities, Bayesian statistics is concerned with 
conditional probabilities and how our belief in a hypothesis can be modified by the observation of a new piece of 
evidence.

8 Exercises

1. Use the tables given in Appendices 1 to 9 to determine whether the following values are significant at the 5 per 
cent level:

a) a z score of 2.01

b) a t score of 1.75 for five degrees of freedom, two-tailed test

c) a U score of 18 for two groups with eight and nine members respectively, non-directional test

d) a W score of 5 for a directional test with 10 non-tied pairs of scores

e) a Spearman rank correlation coefficient of 0.648 for 10 pairs of observations in a one-tailed test.

2. In each of the following sets of circumstances, it is not desirable to use the standard t test. In each case, state 
which test or tests would be preferable.

a) There are more than two groups to compare

b) We wish to establish a repeated measures design

c) The data is not truly continuous, for example we employ a five-point Likert Scale
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d) The distribution of data is skewed.

3. A corpus is divided into five subcorpora, each containing an equal number of words. The word element is found 
to occur 40 times in the scientific subcorpus, and 15 times in each of the other four subcorpora (novels, short stories, 
letters and press). Use the chi-square test to decide whether the word element is significantly more frequent in the 
scientific subcorpus.

9 Further Reading

An excellent introduction to statistics is provided by Statistics in Linguistics by Christopher Butler (1985a). This 
book is aimed at researchers and students of general linguistics who have no previous knowledge of statistics and 
only a very basic knowledge of mathematics. All the material included in this chapter is covered by Butler, except 
for loglinear analysis and Bayesian statistics. The Research Manual: Design and Statistics for Applied Linguistics by 
Evelyn M. Hatch and Anne Lazaraton (1991) covers basic statistics from the standpoint of project design, and uses 
examples taken from applied linguistics. The Computation of Style by Anthony Kenny (1982) is a fascinating 
account of the statistical study of literary style. This book covers the t test, the chi-square test and the use of the F 
distribution, using examples drawn from authentic literary and linguistic material. Kenny describes his book as 
being 'written for a mathematical ignoramus with a purely humanistic background'. Analysing Tabular Data by 
Nigel Gilbert (1993) gives a clear and detailed account of loglinear analysis. The examples used in this book are 
taken from the social sciences. Representing Uncertain Knowledge by Paul Krause and Dominic Clark (1993) has a 
section introducing Bayesian statistics.

Notes

1. The Brown University Standard Corpus of Present Day American English was published in 1964. It contains over 
one million text words of written American English taken from texts published m 1961 and was created for use with 
digital computers. For further details, see Francis and Kucera (1964).

2. This type of sampling would be possible using the spoken section of the British National Corpus, which encodes 
such data.

3. The actual data of McEnery, Baker and Wilson, which used substantially more data than that used m the above 
example, did show significant differences between the questionnaire responses of the two groups.

4. When using the full data set, the correlation between the number of words tagged and the percentage correct was 
found to be significant at the 5 per cent level.

5.The two major political parties in the United Kingdom are the Conservative and Labour parties.

6. If the frequencies along the top row of Table 1.20 are summed, the result gives the total number of NPS with 
subject function m the final position, irrespective of phrase length. This total is known as a marginal, because it 
could be added to the table along its margin.

7. Whenever the evidence is increased, the probability of the hypothesis also increases, and whenever the evidence is 
decreased, the probability of the hypothesis also decreases.
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2 
Information theory

1 Introduction

The following is a brief, technical introduction to this chapter. You should not worry if you do not understand the 
concepts introduced briefly here as it is the purpose of this chapter to explain them.

In Section 2.1 the concept of a language model will be introduced and the origins of statistically based approaches to 
language modelling will be described, starting in Section 2.2 with Shannon and Weaver's mathematical theory of 
communication. At this point it must be noted that, in information theory, the concept of information differs from 
that normally encountered. Rather than being an expression of semantic content, information here describes a level 
of uncertainty, and is highest when all the events which could occur next are equally probable. The quantity which 
measures information is called entropy (see Section 2.4), a measure of randomness in nature. Concepts related to 
entropy are redundancy (see Section 2.6), which is a measure of how the length of text is increased due to the 
statistical and linguistic rules governing a language, and redundancy-free optimal codes (described in Section 2.5). 
An extension of information theory provides the concept of mutual information (MI), described in Section 2.7, 
which is a measure of the strength of association between two events, showing whether they are more likely to occur 
together or independently of each other. MI enables a sequence such as words in a corpus to be compared either with 
the corpus as a whole or with a parallel sequence, such as the same text in another language.

The related tasks of signal processing, speech processing and text processing, first introduced in Section 2.3, will all 
be described in Section 2.8 as stochastic processes in communication, a stochastic process being a sequence of 
symbols, each with its own probability of occurring at a given time interval, as exemplified by the Markov model 
(see Section 2.9).This chapter will cover several approaches to the task of probabilistic language processing, in
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particular the automatic assignment of part-of-speech tags to the words in a corpus. Such techniques include the use 
of hidden Markov models (described in Section 2.10) which can be evaluated using the forward-backward algorithm 
and trained by the Baum-Welch parameter re-estimation procedure. The task of estimating the most likely sequence 
of states that a hidden Markov model has gone through can be performed by the Viterbi algorithm, which is a form 
of dynamic programming. The final concept from information theory which will be introduced is perplexity, which 
will be described in Section 2.11 as an objective measure of language model quality.

A discussion of why statistically based linguistic models are necessary to account for the variety of linguistic 
observations and cognitive behaviours inherent in the production of human speech patterns will be given in Section 
3. In particular, it will be argued that language is not an all-or-nothing, right-or-wrong phenomenon. It is 
fundamentally probabilistic.

Section 4 contains a number of case histories to illustrate the use of information theory in natural language 
processing. The most important of these applications are part-of-speech taggers, such as CLAWS and the Cutting 
tagger, which are both based on Markov models. Applications of information theory in secrecy systems, poetics and 
stylistics, and morpheme identification will be described. The use of mutual information will be described as a 
means of automatic corpus annotation, for such tasks as text segmentation at the character level in morphological 
analysis delimited by spaces, and the identification of idiomatic collocations. Finally, Section 5 consists of a 
discussion of the relatimnship between information, the chi-square measure and the multinomial theorem.

2 Basic Formal Concepts and Terms

2.1 Language models

The term linguistic model is defined by Edmundson (1963) as an abstract representation of a natural language 
phenomenon. These models require quantitative data, and are thus necessarily corpus-based. A language model is 
always an approximation to real language, as we will see in this chapter. Examples of statistical language models are 
those of Markov (1916) (stochastic prediction of sequences), Shannon (1949) (redundancy of English) and Zipf 
(1935) (rank frequency distribution). Language models may be either predictive or explicative. Predictive models, 
such as Zipf's law, set out to explain future behaviour. According to Zipf's law, the rank of a word in a word 
frequency list ordered by descending frequency of occurrence is inversely related to its frequency. We may predict 
the frequency of a word from its rank using the formula
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where k and ϒ are empirically found constants. The distribution of words follows Zipf's law in Chinese, English and 
Hebrew, but the distribution of characters conforms less so. The difference is less pronounced in Chinese, however, 
since many characters are complete words (Shtrikman 1994).

Explicative models exist to explain already observed phenomena, for example Shannon's use of the theory of 
information to estimate the degree of redundancy in the English language. The Markov model is also closely related 
to information theory, but in this chapter we will see that it can have a predictive function too, predicting the 
grammatical parts of speech of a sequence of words. In deterministic models of language typified by rule-based 
approaches there is no element of chance, while in stochastic models, such as those based on information theory and 
Markov models, events are described in terms of their statistical behaviour, particularly probability of occurrence, as 
a function of time. Baayen (1992) compares three models for word frequency distributions  the lognormal law, the 
inverse Gauss-Poisson law, and an extended version of Zipf's law.

2.2 Shannon's theory of communication

Shannon's theory of communication is concerned with the amount of information communicated by a source that 
generates messages, such as a human, a telephone or a newspaper. The term information does not refer to the 
meaning or semantic content of a single message, but to the statistical rarity of that message. The rarer a feature, the 
more information it carries. Information theory deals with the processes of transmission of information through 
communication systems, whether technical apparatus such as the telephone and the radio, or natural language 
communication. According to Shannon, the components of any communication system are those shown in Figure 
2.1. The term message is used to describe whatever is transmitted over such a communication system.

The information source selects a desired message out of a set of possible messages. In the case of human speech, the 
information source is the brain. The transmitter, whose function is to transform the message into signals that can be 
sent along the communication channel, is the voice mechanism producing

Figure 2.1 
Schematic representation of a communication system
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varying sound pressures. The channel itself is air. Part of the definition of the channel is its capacity, which 
determines such factors as the rate at which the signal is transmitted. The receiver or inverse transmitter which 
recreates the message from a sequence of signals is the ear and auditory nerve. The destination or recipient of the 
message is the brain. Noise is the term used for any form of random error arising during signal transmission, 
resulting in the loss of communicated data. Examples of noise are typing mistakes, distortion of waveforms and loss 
of bits in a computer channel. In this chapter we are mainly concerned with systems which are both discrete and 
noiseless. We can think of a discrete source generating the message, symbol by symbol, such as the words of written 
text. Successive symbols will be chosen according to certain probabilities which may depend not only on the current 
symbol but also on previous symbol choices. Shannon defines a physical system, or a mathematical model of a 
system, which produces a sequence of symbols governed by a set of probabilities as a stochastic process.

The application of information theory to human transmission and reception of information can be extended to 
include understanding in noisy conditions, where the noise is a type of undesired information. It explains how the 
difficulty in recognising words depends on the amount of information per word and vocabulary size, where, for 
example, subjects achieve better scores when selecting one of ten digits than when selecting one word from an 
unrestricted vocabulary. Information theory can be applied to the study of response times. For example, subjects 
might be requested to push on one of n buttons in response to one of n signals. The response time will depend on log
(n), which is to be expected if the 'messages' in the human nervous system are optimally encoded.

2.3 Comparison between signal processing, text and speech

Information theory forces one to consider language as a code with probabilistic limitations, and permits various 
properties of this code to be studied using statistical methods. 1 A code is an alphabet of elementary symbols with 
rules for their combination. Sharman (1989) describes how natural language text, Like technical codes, consists of a 
string of symbols (such as letters, words or multi-word groups like put-up-with) drawn from alphabets which are 
finite sets of symbols such as the set of characters from a to z, or the entire set of words in a lexicon or phrase list. A 
string is a finite sequence of possibly repeated symbols selected from the alphabet. In language as in technical codes, 
the description of the combinability of elements plays an important role. For a technical code, the rules for the 
combination of symbols tend to be simpler than in natural language, where there are simultaneous rules for the 
combinability both of meaningless units such as the phoneme or syllable, and for meaningful ones such as 
morphemes (Paducheva 1963).
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The transmission of information is usually initiated by either a phonetic (voice) or graphic (written) source. The 
main difference between these is that running speech provides a continuous message, while text is a discrete source 
with clear divisions between words. Kruskal (1983) noted that in discrete sequences the constituent elements have 
been drawn from some finite alphabet such as the 20 amino acids or four nucleotides. Continuous signals are 
continuous functions of a variable t, typically time, where the function values may be either single numbers such as 
the pressure of a sound wave at time t, or a vector (whole set of values) of coefficients that describes the frequency 
content of a speech waveform at time t. Continuous signals such as speech are processed by converting them into 
discrete ones by sampling at specific time intervals. Typically 10 or 15 coordinates are used to describe the 
component frequencies of a sound wave at intervals of about 30 milliseconds.

Speech processing is an active research area for sequence comparison methods, where they are often referred to as 
time warping or elastic matching. It is difficult to match an isolated word with running speech, due to the occurrence 
of compression and expansion of the message when the rate of speaking increases and decreases in normal speech 
from instant to instant. This results in the need to expand or compress the time axis of the speech signal at various 
times, giving rise to the term 'time warping'. Other instances whereby the speech signal can become warped are 
those caused by the addition, deletion or insertion of material in everyday speech. For example, a speaker may 
expand the dictionary pronunciation 'often' into the spelling pronunciation 'often' by inserting an additional t. Speech 
is often fragmentary, containing hesitations and corrections (insertions). In addition, spoken language contains more 
ellipses (deletions), inversions and situation-dependent topicalised phrasing than typical text. In a work particularly 
important in the context of spoken corpus data, Hosaka (1994) lists the peculiarities of speech as its tendency to 
include unexpected utterances other than well-formed sentences and its use of pauses as phrase demarcators. Also, 
Morimoto (1995) notes that speech has false starts, filled pauses and substitutions, pitch, accent and intonation. The 
speed and style of speech differs greatly between individuals and situations.

We should not think that text corpora are problem-free, however. The semantic content of typical textual and speech 
messages can also often differ. Iida (1995) states that written text such as technical documents contain mainly 
assertive sentences, while dialogue contains various kinds of intention expressions and makes greater use of idioms. 
Unlike text, speech is often accompanied by gestures. Loken-Kim et al. (1995) have shown that such deictic gestures 
differ in subjects speaking on the telephone and in human mediated conversation. Language is infinitely varied, 
whether written or spoken.
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2.4 Information and entropy

Weaver (1949) states that the word 'information' in communication theory relates not so much to what you do say, as 
to what you could say. Thus, information is a measure of one's freedom of choice when one selects a message. The 
concept of information applies not only to individual messages (as the concept of meaning would) but rather to a 
situation as a whole. Consider a situation where the content of a message depends upon the spin of a coin. If the 
outcome is heads, the entire message will consist of the word 'yes', while if the outcome is tails, the message will 
consist of the entire text of a book. Information theory is concerned only with the fact that there are two 
equiprobable outcomes, and not with the fact that the semantic content of the book would be greater than that of a 
single word. Information theory is interested in the situation before the reception of a symbol, rather than the symbol 
itself. For example, information is low after encountering the letter q in English text, since there is little freedom of 
choice in what comes next  it is virtually always the letter u. The concept of information is primitive, like that of 
time, which cannot be defined either, but can be measured.

The quantity used to measure information is exactly that which is known in thermodynamics as entropy (H). In the 
physical sciences, the entropy associated with a situation is a measure of the degree of randomness (or 'shuffled-
ness' if we think of a pack of cards).This is logical if we remember that information is associated with the freedom 
of choice we have in constructing messages. If a situation is wholly organised, not characterised by a high degree of 
randomness or choice, the information or entropy is low. The basic unit of information is called the bit, which is a 
contraction of the words binary digit. The bit is defined as the amount of information contained in the choice of one 
out of two equiprobable symbols such as 0 or 1, yes or no. Every message generated from an alphabet of n symbols 
or characters may be coded into a binary sequence. Each symbol of an n-symbol alphabet contains log2 (n) bits of 
information, since that is the number of binary digits required to transmit each symbol. For example, the information 
in a decimal digit = log2 (10) = 3.32 bits, that of a Roman character log2 (26) = 4.68 bits and for a Cyrillic letter 
log2 (32) = 5 bits.

Entropy is related to probability. To illustrate this, Weaver suggests that one should think of the situation after a 
message has begun with the words in the event. The probability that the next word is that is now very high, while the 
probability that the next word is anything else such as elephant is very low. Entropy is low in such situations where 
the probabilities are very unequal, and greatest when the probabilities of the various choices are equal. This is in 
accord with intuition, since minimum uncertainty occurs when one symbol is certain, and maximum uncertainty 
occurs when all symbols are equiprobable. The exact relationship between entropy and probabilities inherent in a 
system is given by the following formula:
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The minus sign makes H positive, since logarithms of fractions are negative. The notation log2 refers to the use of 
logarithms to the base 2. To convert the more commonly used 1ogarithms to the base 10 to base 2, Shannon gives 
the relation

In general, to change logarithms from base a to base b requires multiplication by logb (a). Thus, in order to compute 
the entropy of a natural language one must:

1. count how many times each letter of the alphabet occurs

2. find the probability of occurrence of each letter by dividing its frequency by the total number of letters in the text

3. multiply each letter probability by its logarithm to the base two

4. add up all these products of probabilities and logarithms of probabilities

5. change the minus sign to a plus.

For example, the character entropy of the word book is calculated as follows: b occurs once, o occurs twice and k 
occurs once. Since our text consists of four letters, the probability of occurrence of b is 1/4 = 0.25, that for o is 2/4 = 
0.5, and that for k is 1/4 = 0.25. The probability of occurrence of all the other letters of the alphabet is 0, since they 
do not occur in the word book, so we need not consider them further. When we multiply each letter probability by its 

logarithm to the base two, for b we get , For o we get 

, and for k we get  Adding together these three 
values gives  1.5, and changing the sign gives a final entropy value of 1.5.

From the formula for entropy it follows that H = 1og2 (number of available choices) if all choices are equally 
probable. For example, H =1og2 (2) = 1 bit for a single spin of a two-sided coin. If all the choices are equally likely, 
then the more choices there are, the larger H will be. Weaver states that is 1ogical to use a logarithmic measure, as, 
for example, it is natural to imagine that thee binary switches can handle three times as much information as just 
one. One binary switch allows two different possibilities, i.e., the switch is either off or on. However, with three 
binary switches there are eight possibilities: off off off, off off on, off on off, off on on, on off off, on off on, on on 
off and on on on. 1og2 (2) = 1 and log2 (8) = 3. Hence the 'tripling of information' intuition is confirmed.

As noted in Chapter 1, Section 2.2, in systems where the probabilities of occurrence are not dependent on preceding 
outcomes, the probabilities are said to be independent, such as in the case of subsequent dice throws. Other
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systems have probabilities which do depend on previous events, such as the removal of balls from a bag which are 
not replaced. If we start off with three black balls and three white balls in the bag, the probability of the second ball 
being white will be greater if the first ball was black. In such cases we talk about conditional probabilities, since the 
probability of drawing a white ball is conditional on the colour of the previous ball. In a sequence of independent 
symbols, the amount of information for a pair of adjacent symbols is the sum of the information for each symbol.

Kahn (1966) writes that the language with the maximum possible entropy would be the one with no rules to limit it. 
The resulting text would be purely random, with all the letters having the same frequency, and any character equally 
likely to follow any other. However, the many rules of natural languages impose structure, and thus lower entropy. 
The above formula for the calculation gives the degree of entropy according to the frequency of single characters in 
the language, without taking into account that the probability of encountering a letter also depends on the identity of 
its neighbours. We can make better approximations to entropy in a natural language, by repeating the above 
calculation for each letter pair (bigram) such as aa, ab and so on, then dividing by two, because entropy is specified 
on a per letter basis. A better approximation still is produced by performing the above calculation for each letter 
triplet or trigram such as aaa, aab and so on, then dividing the result by three. The process of successive 
approximations to entropy can be repeated with ever-increasing letter group length, until we encounter long 
sequences of characters or n-grams which no longer have a valid probability of occurrence in texts. The more steps 
taken, the more accurate the final estimate of entropy, since each step gives a closer approximation to the entropy of 
language as a whole. Adhering to this process, and using a 27-letter alphabet (26 letters and a space character), 
Shannon (1949) found that the entropy of English was 4.03 bits per letter, for bigrams 3.32 bits per letter, and for 
trigrams 3.1 bits per letter. This decrease is due to the fact that each letter influences what follows it (for example, q 
is virtually always followed by u in English), thus imposing a degree of order. Native speakers of a language have an 
intuitive feel for the degree of influence that elements of a language, whether characters or words, have on the 
probability of what may follow. In view of this, Shannon stated that 'anyone speaking a language possesses 
implicitly an enormous knowledge of the statistics of a language'. Unfortunately, that knowledge, as we have noted, 
is vague and imprecise and only the corpus can render such accurate quantitative data.

2.5 Optimal codes

A code is an alphabet of symbols with rules for their combination. The transformation of natural language into code 
is called encoding, such as the transformation of the letter sequence of a telegram into electronic impulses, or the 
conversion of Chinese characters into their corresponding telegraph codes.
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Consider a message written in an alphabet which has only four characters with the relative probabilities 1/2, 1/4, 1/8 
and 1/8. If this is encoded using a binary code where each character is encoded by two digits (00, 01, 10 or 11), a 
message 1000 characters long will need 2000 binary digits to encode it. However, an alternative code could be used, 
where the characters are encoded 0, 10, 110, and 111. If the relative occurrence of these characters in 1000 words of 
text is 500, 250, 125 and 125 respectively, the number of binary digits required to encode the text is 

.Thus, the second code makes it possible to encode text 
using fewer characters. The optimal code is the one which enables a message with a given quantity of information to 
be encoded using the fewest possible symbols. Shannon has shown that the limit to which the length of a message 
can be reduced when encoded in binary is determined by the quantity of information in the message. In this 
example, the amount of information per symbol is

In a message 1000 characters long, the total quantity of information is 1750 bits, so the 0, 10, 110, 111 code is 
optimal (Paducheva 1963).

The basic principle of optimal codes is that if the message consists of independent symbols with unequal 
probabilities, then assign to the most frequent symbol the shortest combination and, conversely, assign to the least 
frequent symbol the longest combination. If the symbols in a message are not independent, then consider code 
combinations for groups of symbols in the output message. Some groups may be high-frequency, others may not 
occur at all. To an extent, natural language is optimally encoded. Common words tend to be shorter, but English has 
only two one-letter words. Non-optimal codes contain an element of redundancy, which will be described in the 
following section.

2.6 Redundancy

The amount of information in a message increases if the number of symbols used is increased, but it decreases, for a 
given number of symbols, with the presence of statistical constraints in the message caused by such factors as 
unequal symbol probabilities and the fact that certain sequences of symbols are more likely than others. Redundancy 
is the factor by which the average lengths of messages are increased due to intersymbol statistical behaviour beyond 
the theoretical minimum length necessary to transmit those messages. For example, the redundancy in a message is 
50 per cent if we find that we can translate it into the optimal code with the same number of symbols, and find that 
its length has reduced by 50 per cent (Edmundson 1963).

Having found the entropy or information per symbol of a certain information source, this can be compared to the 
maximum value this entropy
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could have, if the source were to continue to use the same symbols. The entropy is maximum when the symbols are 
independent and equiprobable. When each symbol carries maximum information, the code is said to be utilised to 
capacity or optimal. For a given number of symbols n, maximum entropy Hmax = log2(n).Thus Kahn (1966) 
calculates the maximum entropy of an alphabet of 27 symbols (26 letters and a space symbol) as log2 (27)or 4.76 
bits per letter. Actual entropy H, maximum entropy Hmax, relative entropy Hrel and redundancy R are related by the 
following formulae:

Thus, the ratio of actual entropy divided by the maximum entropy is called relative entropy, and 1  relative entropy 
= redundancy. Both relative entropy and redundancy are expressed as percentages. If the entropy of English were 
taken to be one bit per letter, redundancy would be 1-(1/4.76) or about 75 per cent.

Redundancy is the fraction of the structure of the message which is determined not by the flee choice of the sender, 
but rather by the statistical rules governing the use of the symbols in question. If the redundant part of the message 
were missing, the message would still be essentially complete. However, Hood-Roberts (1965) points out that 
redundancy is an essential property of language which permits one to understand what is said or written even when a 
message is corrupted by considerable amounts of noise. The presence of redundancy enables us to reconstruct 
missing components of messages.

As an example of sources of redundancy in language, not all elements of language such as letters, phonemes or 
words have the same frequency. For example, according to Hood-Roberts (1965), the relative frequency of 
phonemes in English varies from 11.82 per cent to 0.03 per cent. Dewey (1923) gives the relative frequencies of 
many features of the English language. The same effect is noted for bigrams, trigrams and other n-grams. As longer 
sequences are considered, the proportion of meaningful messages to the total number of possible messages 
decreases. A second example is that more than one letter or letter combination may encode the same sound, such as 
the letter sequences ks and x, kw and q, and c which can represent the sound of phonemes /k/ or /s/ in British English 
spelling; and third is the existence of uneven conditional probabilities, where, for example, the letter q in English is 
almost always followed by the letter u, and almost never followed by anything else. For example, uneven 
conditional probabilities are seen in that the word sequence programming languages is much more likely than the 
sequence languages programming.

As a result of redundancy, electronic text files can be compressed by about 40 per cent without any loss of 
information. More efficient coding of natural language can sometimes be achieved by permitting a certain 
deterioration in
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the original message, by using vowelless English, for example, or the conversion of colloquial language into terse 
telegraphic style. Both of these are possible due to redundancy (Bar-Hillel 1964).An example of almost vowelless 
English given by Denning (1982) is mst ids cn b xprsd n fwr ltrs bt th xprnc s mst nplsnt.

Denning describes how the conscious introduction of redundancy into a coding system enables the creation of self-
correcting codes. Coding is not only used for greater efficiency in terms of time and cost, but also to improve the 
transmission of information. With self-correcting codes, not all possible symbol combinations are used as code 
combinations, according to certain rules. A distortion of one of the symbols changes a code combination into a set of 
symbols that is not a legitimate code combination. If the distinction among code combinations is great enough, one 
can not only find out that an error has occurred, but also predict rather accurately what was the original correct one. 
An optimal code which has no redundancy and uses the least possible number of symbols must be perfect for correct 
understanding.

2.7 Mutual information

Mutual information, and other co-occurrence statistics, are slowly taking a central position in corpus linguistics. As 
a measure, it is described in other books in this series (McEnery and Wilson 1996; Ooi 1998). My aim here is to 
describe mutual information in the context of established information theory. Consider h and i to be events which 
both occur within sequences of events. In a linguistic context, h might be a word in an English sentence while i 
might be a word in the equivalent French sentence; or h might be an input word to a noisy channel while i is an 
output word from that channel. h and i might be members of the same sequence; for example, two words which 
occur in an idiomatic collocation. Sharman (1989) describes how mutual information, denoted I(h;i), shows us what 
information is provided about event h by the occurrence of event i. P(h, | i) is the probability of event h having 
occurred when we know that event i has occurred, called the a posteriori probability, and P(h) is the probability of 
event h having occurred when we do not know whether or not event i has occurred, called the a priori probability. 
For example, P(h | i) could be the probability that the third word in an English sentence might be cat, given that the 
fourth word in the equivalent French sentence is chat, while P(h) could be the probability of the word cat occurring 
m an English sentence regardless of what words appear in its French translation. The relation between I(h;i), the a 
posteriori probability of h and the a priori probability of h is as follows:

The logarithm to the base 2 is used so that the units of I(h;i) are bits of information. The converse relation, which 
shows what information is provided about event i when event h is found to occur, is as follows:
  
< previous page page_63 next page >
 

If you like this book, buy it!

http://www.amazon.com/o/asin/0748610324/ref=nosim/duf-20


< previous page page_64 next page >
Page 64

I(h;i) is identical to I(h;i), which is why this measure of information is called the mutual information between the 
two events. The joint probability of h and i is P(h,i), which is the probability of both events occurring. If h and i are 
single events within two sequences of events called H and I, we can calculate mutual information for each event in 
H compared in turn with each event in I The average mutual information for the entire sequence pair is found by 
multiplying the joint probability of every possible event pair within those sequences by the mutual information of 
that event pair, then finding the grand total of these products. It is also possible to calculate the variance of the 
mutual information when examining the relation between two entire sequences. Sharman describes a special case of 
mutual information which occurs when the occurrence of a given outcome i uniquely specifies the outcome of event 
h. In such a case , and

This is said to be the self information of an event, and is equivalent to the entropy described by Shannon. Another 
link between mutual information and the information described by Shannon is given by Sneath and Sokal (1973), 
who provide the following formula:

Joint information I(h;i) is said to be the union of the information content of two characters in a sequence, while 
mutual information, I(h;i) is their intersection. The mutual information of two events, such as two words in a text, h 
and i, is also given by the formula

where P(h,i) is the probability of observing h and i together, and P(h) and P(i) are the probabilities of observing h 
and I anywhere in the text, whether individually or in conjunction. If h and i tend to occur in conjunction, their 
mutual information will be high. If they are not related and occur together only by chance, their mutual information 
will be zero. Finally, if the two events tend to 'avoid' each other, such as consecutive elements in a forbidden 
sequence of phonemes, mutual information will be negative.

The term 'mutual information' is generally used in computational linguistics as described in this section, but strictly 
speaking the term specific mutual information should be used (Smadja, McKeown and Hatzivassiloglou 1996). This 
is to distinguish it from average mutual information, of which specific mutual information constitutes only a part. 
Specific mutual information is given by the formula
  
< previous page page_64 next page >
 

If you like this book, buy it!

http://www.amazon.com/o/asin/0748610324/ref=nosim/duf-20


< previous page page_65 next page >
Page 65

Specific mutual information I(X, Y) is simply the logarithm of the probability of the two events X and Y occurring 
together divided by the probability of the two events whether together or in isolation. In order to calculate average 
mutual information we must also add on the logarithms of the following quantities:

1. the probability of the first event occurring when the second event does not occur divided by the product of the 
independent probabilities of the first event occurring and the second event not occurring

2. the probability of the second event occurring when the first event does not occur divided by the product of the 
independent probabilities of the second event occurring and the first event not occurring

3. the probability of both events simultaneously not occurring divided by the product of the independent 
probabilities of the first event not occurring and the second event not occurring

Practical applications of specific mutual information include the derivation of monolingual and bilingual 
terminology banks from corpora, as described in Chapter 4, Sections 3.2.4 to 3.2.6, the segmentation of undelimited 
streams of Chinese characters into their constituent words as described in Chapter 4, Section 3.2.11, and the 
identification of idiomatic collocations (see this chapter, Section 4.7).

2.8 Stochastic processes: a series of approximations to natural language

Examples of stochastic processes provided by Shannon are natural written languages, such as Chinese, English or 
German, continuous information sources that have been quantised and rendered discrete, such as quantised speech, 
and mathematical models where we merely define abstractly a stochastic process which generates a sequence of 
symbols. The simplest such model is one where the symbols are independent and equiprobable, such as successive 
trials of a dice or the entries in a random number table. This is the zero-order approximation. Using such a model, 
Shannon obtained the following sample of text:

xfoml rxkhriffjuj zlpwcfwkcy ffjeyvkcqsghyd

In a slightly more sophisticated model, the symbols are independent but occur with the frequencies of English text. 
This is called the first-order approximation, and might produce the following:

ocro hli rgwr nmielwis eu ll nbnesebya th eei alhenhtppa oobttva nah

In the second-order approximation, successive symbols are not chosen independently, but their probabilities depend 
on preceding letters. This repro-
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duces the bigram structure of English, where the frequencies of adjacent character pairs are based on those found in 
real text. For this approximation, Shannon obtained the following:

on ie antsoutinys are t inctore st bes deamy achin d ilonasive tucoowe at teasonare fuzo tizin andy tobe 
seace ctisbe

In the third-order approximation, the trigram structure of English is reproduced:

in no ist lat whey cratict froure birs grocid pondenome of demonstures of the reptagin is regoactiona of 
cre.

The resemblance to ordinary English text increases quite noticeably at each of the above steps. Shannon observed 
that these samples have reasonably good structure (i.e., could be fitted into good sentences) out to about twice the 
range that is taken into account in their construction. Analogous patterns can also be generated by using words, 
lemmas or parts-of-speech tags rather than letters as symbols, as in the following first-order word approximation for 
English (Paducheva 1963, p. 143):

representing and speedily is an good apt or come can different natural here in came the to of to expert 
gray come to furnishes the line message had be there

The following is a second-order word approximation for English:

the head and in frontal attack on an English writer that the character of this point is therefore another 
method for the letters that the time of who ever told the problem for an unexpected

In the first order case, a choice depends only on the preceding letter and not on any before that. The statistical 
structure can then be described by a set of transition probabilities Pi(j), the probability that the letter i is followed by 
the letter j. An equivalent way of specifying the structure is to give the bigram or two-character sequence 
probabilities P(i,j), the relative frequency of the bigram i,j. Pratt (1942) gives the following examples of the 
frequency of common bigrams per 1000 words of normal text: TH 168, HE 132, AN 92, RE 91 and ER 88. Bigram 
frequency tables can be normalised into transition probability tables, as shown in the following example. Imagine 
that the letter T can only be followed by H, E, I, O, A, R and T. The relative frequencies of the resulting bigrams are 
TH 168, TE 46, TI 45, TO 41, TA 29, TR 29 and TT 9. First find the sum of these relative frequencies, which is 367. 
The probability of encountering the letter H if the previous letter was T is then 168/367 or 0.46.

The next increase in complexity involves trigram frequencies. For this we need a set of trigram frequencies P(i,j,k) 
or transition probabilities Py(k). Pratt gives the following examples of English trigram frequencies: THE 5.3 per 
cent, ING 1.6 per cent, ENT 1.2 per cent, ION 1.2 per cent, ..., AAA 0 per cent,
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AAB 0 per cent. It is interesting to note the extent to which natural languages are characterised by their highest-
frequency trigrams. For German the commonest trigrams are EIN, ICH, DEN, DER, while for French they are ENT, 
QUE, LES, ION. The most common in Italian are CHE, ERE, ZIO, DEL, and in Spanish they are QUE, EST, ARA, 
ADO. As a general case, we talk about an n-gram model. For practical purposes, when producing approximations to 
natural language, a trigram model is probably enough. Above this level, we are faced with the law of diminishing 
returns and very large, sparse transition matrices. The work we have covered so far is bringing us closer and closer 
to the relevance of language modelling to corpus linguistics. The ability of the corpus to provide data to language 
models allows them in turn to process corpora. But before we see exactly how this is done, we need to consider a 
few more aspects of language modelling.

2.9 Discrete Markov processes

Stochastic processes of the type described in the previous section are known as discrete Markov processes. The 
theory of Markov processes was developed by A. A. Markov (1916), as a result of his study of the first 20,000 
words of Pushkin's novel in verse Eugene Onegin. Shannon describes a discrete Markov process as consisting of (a) 

a finite number of possible states, and (b) a set of transition probabilities, which give the probability that if the 

system is in state  it will next go to state  To make this Markov process into an information source, we need 
only assume that a letter (or part of speech if these are the units of our model) is produced for each transition from 
one state to another. The states will correspond to what Shannon describes as the residue of influence from 
preceding letters.

In a Markov model, each succeeding state depends only on the present state, so a Markov chain is the first possible 
generalisation away from a completely independent sequence of trials. A complex Markov process is one where the 
dependency between states extends further, to a chain preceding the current state. For example, each succeeding 
state might depend on the two previous states. A Markov source for which the choice of state depends on the n 
preceding states gives an (n+1)th-order of approximation to the language from which the transition probabilities 
were drawn and is referred to as an nth-order Markov model. Thus, if each succeeding state depends on the two 
previous states, we have a second-order Markov model, producting a third-order approximation to the language.

Ergodic Markov processes are described by Shannon as processes in which every sequence produced of sufficient 
length has the same statistical properties such as letter frequencies and bigram frequencies. In ergodic Markov 
models every state of the model can be reached from every other state in a finite number of steps. Natural language 
is an example of an ergodic Markov process.
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2.10 Hidden Markov models

Rabiner (1989) describes how the theory of Markov models can be extended to include the concept of hidden states, 
where the observation is a probabilistic function of the state. In observable Markov models, such as those described 
by Shannon, each state corresponds to an observable event. However, according to Dunning (CORPORA list 2), for 
a hidden Markov model (HMM), the output is not the internal state sequence, but is a probabilistic function of this 
internal sequence. Dunning also states that some people make the output symbols of a Markov model a function of 
each internal state, while others make the output a function of the transitions. Jakobs (CORPORA list) describes that 
for the hidden Markov model, instead of emitting the same symbol each time at a given state (which is the case for 
the observable Markov model), there is now a choice of symbols, each with a certain probability of being selected.

Rabiner explains the operation of a hidden Markov model by reference to the urn and ball model. Imagine a room 
filled with urns, each filled with a mixture of different coloured balls. We can move from one urn to another, 
randomly selecting a ball from each urn. The urns correspond to the states of the model, and the colours of the balls 
correspond to the observations, which will not always be the same for any particular urn. The choice of urns to be 
visited is dictated by the state transition matrix of the hidden Markov model. The model is said to be hidden because 
we only see the sequence of balls which were selected, not the sequence of urns from which they were drawn.

A hidden Markov model is a doubly stochastic process which consists of (a) an underlying stochastic process that 
cannot be observed, described by the transition probabilities of the system, and (b) a stochastic process which 
outputs symbols that can be observed, represented by the output probabilities of the system (Sharman 1989).The 
essential components of a hidden Markov model (where the entire model is denoted by λ) can be summarised by the 
entire set of transition probabilities (denoted by A), the entire set of output probabilities (denoted by B) and its initial 
state (denoted by π).

Sharman (1989) states that when hidden Markov models are used in real-world applications, three important 
problems that must be solved are evaluation, estimation and training. The evaluation problem is to calculate the 
probability that an observed sequence of symbols occurred as a result of a given model, and may be solved using the 
forward-backward algorithm, described in Section 2.10.1. In the estimation problem, we observe a sequence of 
symbols produced by a hidden Markov model. The task is to estimate the most likely sequence of states that the 
model went through to produce that sequence of symbols, and one solution is to use the Viterbi algorithm, described 
in Section 2.10.2. During training, the initial parameters of the model are adjusted to maximise the probability of an 
observed sequence of symbols. This will enable the model to predict future sequences of symbols. Training may be 
performed by the BaumWelch re-estimation procedure, described in Section 2.10.3.
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2.10.1 Evaluation: the forward-backward algorithm

For an HMM with known parameters, and for the particular sequence of states the model has passed through, the 
probability of the entire sequence of observed symbols produced by the model is simply the product of the 
probability of the first observation generated by the first state multiplied by the probability of the second observation 
arising from the second state, then multiplied by the probability of each observation returned by each state in the 
sequence in turn, up to the probability of the final observation produced by the final state. This is described by the 
formula

O is the sequence of observed symbols, I is the sequence of states undergone by the model, and λ is the model itself. 
Thus,  is the probability of encountering the sequence of observations given the sequence of states of the 
model and the model itself. While I is used to denote the entire sequence of states that the model has passed through, 
each individual state is denoted i, where i1 is the first state, i2 the second, and so on.  is the probability of 
observing a symbol when the model is in the first state,  is the probability of observing a symbol when the 

model is in the second state, and since T is the number of states in the entire sequence,  is the probability of 
observing the final symbol in the final state. The three dots (...) mean that we must also multiply by the probabilities 
of observing all symbols for all states between the second and final state. b is used to denote each individual output 
probability because B was used to denote the full set of output probabilities possessed by the model.

The probability of a given sequence of states (I) that a model (λ) goes through depends only on the initial state and 
the transition probabilities from state to state. This is shown by the formula

Since π denotes the initial state, one of the parameters of the model,  denotes the a priori probability of the first 

state of the model. , is first multiplied by  (the probability of making the transition from state one to state 

two) then multiplied by  (the transition probability for moving from the second state to the third state) then 
multiplied in turn by all the other transition probabilities for moving from one state to the next, and finally by the 
transition probability of moving from the penultimate state to the final state. Thus, the initial probabilities start the 
model off and the transition probabilities keep it stepping.

For a given model, the joint probability of the sequence of observations O and the sequence of states I occurring 
together is the product of the two quantities derived above and is represented as:
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The overall probability of the observation sequence  is the sum of all possible different state sequences which 
could have given rise to the observed sequence of symbols

where the summation symbol Σ with subscript I, pronounced 'Sum over all I', means that the product 

 must be found for all possible values of I (state sequences), then added together. 
Combining all three formulae derived in this section we obtain

The summation symbol Σ with subscript  means that the following product must be found for all 
possible combinations of states, and the results added together to produce an overall probability value for the 
observed sequence of symbols. In fact this requires too many calculations to be computationally feasible, 3 so a 
more efficient method of calculating the observed sequence is required. Such a method is the forward-backward 
algorithm.

The forward-backward algorithm consists of two distinct phases, a forward pass and a backward pass. In the forward 
pass, the initial state probabilities of the model are used to calculate subsequent state probabilities, while in the 
backward pass, the final state of the model is used as the starting point, from which one calculates back to find 
earlier state probabilities. Either the forward pass or the backward pass can be used to calculate the probability of the 
observed sequence of symbols produced by a hidden Markov model.

In the forward pass, the value  is the probability of the partial sequence of observations up to time t, which 
results in being in a given state denoted  for the model λ. This is shown formally as:

For each possible state of the model i, the probability of being in state i at time t = 1 (the initial state) and producing 
the first symbol, is first calculated using the formula

This means that the probability of observing the first symbol is the a priori probability of being in the state that 
produced the first symbol multiplied by the probability that that state would produce the observed symbol. The 

probability of being in state  at time t and emitting the symbol  is then calculated for each successive time step 
from 1 to T, according to the formula:
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 is the probability of the partial sequence of observations up to time t-l,

which results in the model being in state . The j =1 below the summation sign Σ and the N above it shows that 

 must be calculated for all possible states j between 1 and N, where N is the number of possible states. The 
summation must be performed over all preceding states, since in theory any state could cause a transition to the 

current state. Each time  is calculated, it must be multiplied by  which is the probability of the transition 

from state j to state i. These products are all added together` then multiplied by  the probability that state i 
would produce the observed symbol at time t. This type of equation is called recursive, since the state probability at 
one time is defined m terms of the state probabilities at the previous time step. Having found the α values for time t, 
we can substitute them in the above formula for the α values at time t-1, and in this way calculate the α values for 

the next time step, t+1. This process is repeated until we obtain , the probability of state i being the final state. 

To commence the process, use the formula for , then use this as the first value of  in the formula for 

.

Finally, to calculate the overall probability of all the observations given the model, from all the possible final states, 

we must find all values of  for all values of i in the range 1 to N, then add them together, as shown in the 
equation below:

The backward pass is calculated in analogous fashion to the forward pass. For the backward pass, we define  
as the probability of the partial sequence of observations starting at time t, which results in the model being in the 

state  for a given model λ:

For each state i in the range 1 to N the starting value of being in state i at time t = T is calculated, using the relation 

. This relation holds because there must be some path by which the model gets to the final state. For the 

backward pass, a recursive formula is used to calculate the probability of being m state  at time and producing 

the observed symbol  for each previous time step, T-1, then T-2, and so on back to t = 1. The formula is

Finally, to calculate the overall probability of all the observations given the model from all the possible final states, 

we must find all values of  for all values of  in the range 1 to N, then add them together, as shown in the 
following equation:
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2.10.2 Estimation: the Viterbi algorithm

In the estimation problem, we wish to find the most likely sequence of states for a sequence of observations 
produced by a given model. For example, it is possible to create a Markov model describing all possible parses of a 
sentence where some of the constituent words could have more than one part of speech assigned to them. The single 
most likely parse can be found by means of the Viterbi algorithm. The Viterbi algorithm conceptually resembles the 
forward pass algorithm described in the previous section but, instead of summing the transition probabilities which 
lead to a given state, the top M probabilities are taken instead. Since these top M most probable state sequences are 
used as the basis for calculating the transition probabilities which lead to the next state, the Viterbi algorithm is also 
a form of dynamic programming, which is described in Chapter 3, Section 4.6.

In its most general form, the Viterbi algorithm may be viewed as a solution to the problem of estimating the state 
sequence of a discrete-time finite-state Markov process. The MAP (maximum a posteriori probability) estimation 
problem is formally identical to the problem of finding the shortest route through a certain graph. Forney (1973) 
describes the process graphically by considering a trellis, where each node corresponds to a distinct state at a given 
time (which in the case of a part-of-speech tagger would be a candidate tag for a given input word) and each branch 
represents a transition to some new state through the state diagram. The trellis begins and ends at known states, 
which in the case of a part-of-speech tagger would be the null tags at the start and end of each sentence. To every 
possible state sequence there exists a unique path through the trellis and vice versa. Figure 2.2 shows a Markov 
model for part-of-speech tagging viewed as a trellis.

Every path in Figure 2.2 (such as those leading from the initial null tag to the final null tag) may be assigned a length 
proportional to -log (probability of that path being correct). To find the state sequence for which the probability is 
maximum, the algorithm finds the path whose length is minimum. The length

Figure 2.2 
Markov model for part-of-speech tagging viewed as a trellis
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of a sequence of transitions is the sum of the individual lengths of those transitions. In a part-of-speech tagger, the 

path length of an individual transition might be given by a function such as ; where  is 

the a priori probability of a term being assigned a given part-of-speech tag , is the probability of the trigram 

 occurring in sequence and c is a small constant to prevent path lengths of infinity occurring.

For any particular time, from one state to another there will generally be several path segments, the shortest M of 
which are called survivors. Thus, at any one time k, one need remember only the M survivors and their lengths. To 
get to time k+1, one need only extend all time k survivors by one time unit, compute the lengths of the extended path 
segments, and for each node x(k+ 1) select the shortest extended path segment terminating in x(k+ 1) as the 
corresponding time (k+1) survivor. This recursive process continues indefinitely without the number of survivors 
ever exceeding M. Although the extension to infinite sequences is theoretically possible, any practical 
implementation must select a maximum sequence length, and a value of M must be specified.

2.10.3 Training: the Baum-Welch algorithm

No analytical solution is known for the problem of training a hidden Markov model. Thus we must employ iterative 
techniques such as the Baum-Welch re-estimation algorithm. The task is to adjust the model parameters to maximise 
the probability of an observed sequence of symbols (Sharman 1989).

Given a model which produces an observed sequence of symbols, we wish to find , the probability of being in 
state  at time t and making a transition to state  at time t+ 1. Then:

The symbols used in this equation are as follows:  is the probability of arriving in state  at time t by any path 

leading from the initial state, and producing the output symbol  This is calculated for the forward pass of the 

forward-backward algorithm.  is the probability of making the transition from state  to . The transition 

probabilities are original parameters of the model.  is the probability of producing the output symbol at the 

next time step, . The output probabilities are also original parameters of the model.  is the probability of 
leaving state  at time t+l by any path, and eventually getting to the final state. This is calculated by the backward 
pass of the forward-backward algorithm.

The probability of being in state  at time t is called  and is found by adding together all the values of 

calculated for all values of i from 1 to N, the total number of states in the model, as follows:
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The expected number of transitions made out of state  is called  which is the sum of all values of  
calculated at every time step from t = 1 to t = T, where T is the total number of steps taken by the model, as shown 
by the equation

The expected number of transitions made from state  to state  is called , and is the sum of all values of  
taken at each time step from t = 1 to t = T:

In order to optimise the parameters of the model to maximise the probability of the observation sequence, we must 
re-estimate the values of the three parameters defining the model; namely, the initial state probabilities, the transition 
probabilities and the output probabilities. First we re-estimate the probability of each of the initial states. The 
original probability of the model initially being in state i was called , and the re-estimated probability is called  

The  values are equal to the  values, which are the values of  when t = 1. Secondly, the new estimate of 

each state transition probability, called , is found using the relation

This is the ratio of the expected number of transitions from one state to the next, divided by the total number of 

transitions out of that state. Finally, the new estimate of each output probability, called , is the ratio of the 
expected number of times of being in a state and observing a given symbol divided by the expected number of times 
of being in that state, given by the formula

We now have a new model, , which is defined by the re-estimated parameters  and . Thus

These values may be used as the starting points of a new re-estimation procedure, to obtain parameter estimations 
which account even better for the observed sequence of symbols. By continuing this iterative process, we will 
eventually reach a point where the re-estimated parameters are no longer any different to the input parameters. The 
values are then said to have converged. The convergence point is called a local maximum, which does not preclude 
the possibility that the algorithm may have missed an even better set of parameters
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called the global maximum. If the local maximum is the same as the global maximum, we have found the set of 
model parameters which most closely accounts for the sequence of observed symbols. The Baum-Welch algorithm 
is an example of a class of algorithms called estimation-maximisation algorithms or EM-algorithms, all of which 
converge on a local maximum. Highly mathematical accounts of the use of EM-algorithms are given by Baum and 
Eagon (1967), Baum et al. (1970) and Dempster, Laird and Rubin (1977).

2.11 Perplexity

Perplexity is the final concept from information theory that we will consider. Sharman (1989) writes that when 
considering the perplexity of a text, we are asking: what is the size of the set of equiprobable events which has the 
same information? For example, perplexity is the average size of the set of words between which a speech 
recogniser must decide when transcribing a word of the spoken text. The difficulty of the task of guessing the 
unknown event (the next word) is as difficult as guessing the outcome of a throw of a dice with 2H faces, where H is 
the information or entropy of that juncture of the word sequence. It is a measure of the average branching of the text 
produced by a model, and is maximum if the words of the text are randomly selected with uniform probability.

Jelinek (1985) advocates the use of perplexity as an objective measure of language model quality. Proposed changes 
to a model can then be evaluated by examining whether they succeed in reducing the perplexity of the model. The 
symbols  denote the sequence of words in a corpus to be recognised,  is the actual 

probability of that sequence and  is the estimate of the probability of that word sequence according 
to a language model. The amount of information per word in the corpus is estimated by

where n is the size of the corpus. Since the actual probabilities of the strings of the natural language cannot be 
known in practice, we must use the estimations of these real probabilities given by a language model. The 
information per word of language produced by the model is measured by its log probability, which is given by the 
analogous formula

The perplexity of the model, PP, is equal to 2LPor

For natural language, PP = 2H
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2.12 Use of perplexity in language modelling

Sekine (1994) found that measuring the perplexity of texts was a good method of identifying those texts which were 
written in a genre-specific sublanguage. Such texts tend to use a smaller vocabulary than texts selected randomly 
from across an entire corpus, and thus tend to have lower perplexity. Sekine's work is described in more detail in 
Chapter 3, Section 6.

Jelinek (1985) describes the use of the forward-backward algorithm with a hidden Markov chain model for speech 
recognition to perform the following tasks:

1. to determine the weights used in a formula for the estimation of trigram probability

2. to annotate text automatically by parts of speech

3. to estimate the probabilities in a word prediction formula that involves the part-of-speech classification of words

4. to automatically infer any new part-of-speech classes.

The approach listed first was to overcome the problem that many trigrams which do not occur at all in the training 
text, do sometimes appear in test sets. The trigram frequencies were smoothed according to a formula which also 
takes into account the bigram frequency of the second and third word and the a priori probability of the third word. 
The formula listed third stated that the probability of encountering word 3 after word 1 and word 2 is the probability 
k of word 3 being the word given its part-of-speech category multiplied by the probability h of part-of-speech tag g3 
following tags g1 and g2 Jelinek used perplexity as a measure to show whether the refinement suggested in 1. and 3. 
improved the original simple trigram model.

To automatically infer part-of-speech categories without making use of any knowledge of existing part-of-speech 
categories, the M most frequent words of the vocabulary were each assigned to different part-of-speech classes 
called nuclear classes. Each of the remaining words which do not form class nuclei are originally allowed to belong 
to any of the M classes. Through a self-organised clustering process the words progressively abandon most of their 
class memberships until no word belongs to more than a few classes.

3 Probabilistic Versus Rule-Based Models of Language

Sampson (1987) states that the probabilistic approach to language analysis is characterised by the use of analytic 
techniques which depend on statistical properties of language structure rather than reliance on absolute logical rules. 
The use of statistics enables one to study authentic data drawn from unrestricted domains of discourse rather than 
preselected domain-specific texts.

For the task of text parsing, an alternative approach to the use of statistical techniques is to use a form of genera five 
grammar, a system of rules which
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define all possible grammatically correct sentences of the language to be parsed. This produces an 'all or none' 
situation, where any sentence not conforming to the constraints of the grammar will be deemed incorrect. Examples 
of generative grammars are generalised phrase structure grammars and augmented transition networks, which are 
both described by Salton and McGill (1983). However, Sampson points out that no existing generatire grammar can 
account for all the diversity and peculiarities found in authentic natural language. For a fuller discussion of his 
views, see McEnery and Wilson (1996).

Paducheva (1963) also describes how language studies constantly show instances where phenomena cannot be 
described fully yet briefly, since language is a system composed of a large number of diverse objects interacting 
according to very complex laws. It is only rarely that one can formulate strict, fully determined rules about language 
objects. The application of fully determined rules means that upon realisation of a fully determined complex of 
conditions, a definite event must take place. For example, it is difficult to formulate strict rules about the use of the 
article before the noun in English. An analysis of the rules given in ordinary grammar books will show that they do 
not allow for the unique definition of all the conditions for choosing an article. If the number of factors taken into 
account is increased, the number of errors will decrease, but the set of rules will become ever more cumbersome, 
and potentially inaccurate. This suggests that rather than try to define a comprehensive set of fully determined rules, 
it may be better to say that 'given the occurrence of a set of conditions, an event will occur on a certain proportion of 
occasions'. Paducheva writes that, because of the complexity, multiplicity and close overlapping of laws governing a 
natural language, the laws of language codes cannot be described in the same way as the rules for technical codes. 
Unlike a technical code, the laws of a natural language code can be broken by, for example, the utterances made by 
people not familiar with the domain, foreign words (which can break the rules of phoneme combmarion), and new 
words.

Sapir (1921) said 'All grammars leak', meaning that certain acceptable linguistic combinations will always be 
overlooked, since the production of an entirely watertight grammar would require the incorporation of an infinite 
number of rules. The probabilistic approach, on the other hand, allows us to dispense with a grammar of 'all or none' 
rules. No absolute distinctions between grammatical and ungrammatical forms are made, but instead the likelihood 
of any linguistic form occurring is described in terms of its relative frequency, thus enabling more than a two-step 
ranking of sentences. Paducheva concludes that 'Naturally it is better to have such statistical rules ... true no less than 
94 per cent of the time, than to have no rules at all or to have 10 pages of rules for each individual object of 
linguistic study', while Halliday (1991) reminds us that a human parser does not attain 100 per cent accuracy either. 
This is partly because some instances are inherently indeterminate but also
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because humans make mistakes. Outside corpus linguistics, such as in physics, it is also convenient to use a 
probabilisitic model rather than trace a long, involved derivation of a system of equations, as noted by Damerau 
(1971).

Halliday points out that it has long been accepted that different words have different relative frequencies, as 
predicted by Zipf's law described in the previous section. For example, native speakers of English would know that 
the word go is more frequent than walk which in turn is more frequent than stroll. This not only shows that humans 
are able to internalise vast amounts of probabilistic knowledge pertaining to language, but also leads onto the 
suggestion that if grammar and lexis are complementary perspectives forming a continuum, models of language 
should accept relative frequency in grammar just as they should accept relative frequency in lexis. It has been shown 
that the relative frequencies of grammatical choices can vary both in diachronic studies and across registers, as in 
Svartvik's (1966) study of the ratio of active to passive clauses in various text genres. Thus, for studies of register 
variation, probability is of central importance.

Just as native speakers are inherently aware of the relative frequencies of go, walk and stroll, they can do the same 
for many aspects of grammar, recognising, for example, that the active voice is more common than the passive 
voice. In other instances they will be less certain, such as in comparing the relative frequencies of this and that, 
suggesting that this pair tend to be more equiprobable. Frequency information from a corpus can be used to estimate 
the relative probabilities within any grammatical system, as shown by Leech, Francis and Xu (1994) to demonstrate 
the gradience of preference for alternative forms of the genitive rather than the existence of hard and fast rules to 
state when one form should always be used. Pure all-or-none rule-based systems do not take into account the relative 
frequency of the allowable linguistic constructs.

Even at the level of pragmatics, probability, rather than hard and fast rules, seems to be used by humans. McEnery 
(1995) carried out experiments that showed inferencing in language is a matter of degrees of belief rather than 
absolute belief. His experiments show that language comprehension is probabilistic and not deterministic.

Language may be described on many levels  the level of phonemes, syllables, morphemes, words or letters, and so 
on. The combination of units on one level is affected by limitations reflecting laws of combinability not only on that 
level, but on other levels as well. If we wish to describe the laws governing com bination in the form of structural, 
qualitative, determinate rules, we must separate the limitations affecting the laws of one level from all the others. In 
practice it is very difficult to define exactly the criteria of separation. Statistical laws of combination, on the other 
hand, can be made explicit from immediate observation of corpus texts. One does not have to develop criteria for 
idealised text as required to divide limitations among levels.
  
< previous page page_78 next page >
 

If you like this book, buy it!

http://www.amazon.com/o/asin/0748610324/ref=nosim/duf-20


< previous page page_79 next page >
Page 79

A number of experiments have been performed to test one or more consequences of the Markov model. Looking at 
some of these studies, we may conclude that some aspects of human speech behaviour appear to be rule directed, 
while other aspects appear to be probabilistic. Damerau (1971) describes how one class of experiments categorised 
under hesitation studies showed that observed human behaviour was in accordance with that predicted by the 
Markov model, while the results of other experiments could be interpreted in the light of either a probabilistic or a 
rule-based model.

The hesitation studies examine Lounsbury's (1965) hypotheses that

1. hesitation pauses in speech correspond to the points of highest statistical uncertainty in a sequence of words

2. hesitation pauses frequently do not fall at the points where a rule-based grammar would establish boundaries 
between higher-order linguistic units.

All the hesitation studies used a corpus of recorded speech material. The criteria for identifying hesitation points 
were either the agreement of two judges (the approach of Tannenbaum, Williams amd Hillier 1965) or the presence 
of a quarter-second silence period (used by Goldman-Eisler 1958). The transition probabilities (the probabilities of 
two units of language such as words occurring one after the other) which reflect the degree of statistical uncertainty 
at each point in the corresponding text were estimated using human subjects, who had to guess which words were 
missing from the text. The transition probabilities were the ratio of correct guesses to total guesses. Tannenbaum,
Williams and Hillier used the cloze procedure with every fifth word deleted, while Goldman-Eisler told the subjects 
to guess the next word when shown all previous words, as in Shannon's game, described in Section 4.4. In their 
examination of Lounsbury's second hypothesis, Maclay and Osgood (1959) showed that approximately half of all 
pauses occurred within phrases rather than at phrase boundaries, and thus the predictions of the Markov model 
appeared to be confirmed.

Other studies described by Damerau include that of Miller (1950) who showed that certain statistical approximations 
to real English (called fourth-and fifth-order Markov models) could be remembered as easily as a meaningful text 
passage, and that of Somers (1961) who calculated the amount of information in Bible texts. In these experiments, 
results obtained using one theory can generally be utilised in the context of another theory.

The use of the probabilistic approach may be illustrated by a description of the CLAWS word-tagging system which 
is based on a Markov model. The function of one version of CLAWS is to assign one of 133 possible parts-of-
speech or grammatical tags to each word in the sequence of English text that it is presented with (Garside 1987). A 
list of candidate tags and their probabilities is assigned to each word using a lexicon. One of these candidate tags is 
chosen
  
< previous page page_79 next page >
 

If you like this book, buy it!

http://www.amazon.com/o/asin/0748610324/ref=nosim/duf-20


< previous page page_80 next page >
Page 80

as the most likely candidate for each word, by taking into account both its a priori probability found in the lexicon 
and a stored matrix of the frequencies with which one word tag tends to follow another in running text. These values 
are called transition frequencies, and are found empirically from a part-of-speech tagged corpus beforehand. Finally, 
the most likely sequence of tags in the input sentence is found using the Viterbi algorithm. The CLAWS system will 
be described in detail in Section 4.1.1.

The CLAWS probabilistic tagging system runs at a rate of between 96 per cent and 97 per cent of authentic text 
correctly tagged. This result is achieved without using any grammatical knowledge (in the generative grammarian's 
sense) at all. All its 'knowledge' is probabilistic, being stored in the 133x133 matrix of tag transition frequencies. No 
cell of this matrix is given a value of 0, so for CLAWS nothing is ruled out as impossible. The CLAWS approach 
did not set out to achieve psychological plausibility, but, ironically, it is more psychologically plausible than a 
generafive grammar-based system which returns no output at all in response to ill-formed input. Consider what 
might first occur to you if you see a sentence which contains a word with an unexpected part-of-speech tag, such as 
'He waits for a describe'. You would notice not only that the word does not usually have that tag but that in view of 
its context, one might expect it to have that tag. CLAWS would do exactly the same, while a more deterministic 
system may reject this as ill-formed input.

There are still a number of theoretical problems with the use of probabilistic models of language. The simple 
Markov process gives a poor approximation of real text, since cohesive features in language such as anaphora may 
act at great distances. An extreme example of this is Proust's lengthy A la recherche du temps perdu, where the very 
first word was deliberately chosen to be identical to the very last word. The statistical approach to describing 
combinatory capabilities also possesses the restriction that it does not reflect the qualitative diversity of relations 
among elements, such as the multiphcity of grammatical relations among words. Similarly, Paducheva points out 
that language communications can be studied on several levels, corresponding to phonemes, syllables, words and so 
on. The combination of units on one level is affected by limitations not only on that level, but on other levels as 
well, and it can be difficult to separate the limitations which apply at one level from those affecting other levels.

4 Uses of Information Theory in Natural Language processing: Case Studies

4.1 Part-of-speech taggers

Our principal case study for this chapter is the CLAWS word-tagging system, described by Garside (1987), which 
performs probabilistic part-of-speech tagging. CLAWS uses the Viterbi algorithm to infer the most likely sequence 
of actual word tags given all sequences of possible word tags. This task is also performed by the Cutting tagger, 
which will be described in Section 4.1.2.
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While the CLAWS tagger derives its transition probabilities from the Brown corpus, the Cutting tagger can be 
trained on any text using the Baum-Welch algorithm. Following our examination of the Cutting tagger, we will look 
at the use of information theory in a variety of relevant fields.

4.1.1 The Claws word-tagging system: a corpus annotation tool

Any automatic parsing approach must take into account both that there are a large number of homographs, or words 
spelt alike but with different meanings, and that natural language is open-ended, developing new words or new 
meanings at any time. The CLAWS tagging system consists of five separate stages applied successively to a text to 
be tagged. The first step is pre-editing where the text is cleaned and verticalised (one word is printed above another). 
This is followed by candidate tag assignment, where each possible tag that might apply to a word is assigned in 
descending order of likelihood. Thirdly, multi-word units such as idioms are tagged as single items. The fourth step 
is tag disambiguation: this stage inspects all cases where a word has been assigned more than one tag, and attempts 
to choose a preferred tag by considering the context in which the word appears, and assessing the probability of any 
particular sequence of tags. The final phase is manual post-editing, in which erroneous tagging decisions made by 
the computer are corrected by human editors.

Tag assignment is performed by a program called WORDTAG. Most words can be assigned a set of possible tags by 
matching against a stored lexicon. The lexicon contains all function words (in, my, was, that, etc.), and the most 
frequent words in the open classes noun, verb and adjective. This lexicon accounts for a large proportion (65-70 per 
cent) of the tagging decisions made at this stage. If the word is not found in the lexicon, its suffix is matched against 
the suffix list, which contains real suffixes such as -ness (suggesting a noun) and also any word endings which are 
almost always associated with a certain word class; for example, -mp (suggesting a noun or verb: exceptions such as 
damp are in the lexicon).The suffix list is searched for the longest matching word ending. If all the previous rules 
fail, tags are assigned the open classes verb, noun or adjective by default. Very few words are assigned this default 
tagging and tend to be deviant spellings.

The tag disambiguation program is called CHAINPROBS. It is at this stage that the work we have looked at so far 
becomes relevant to corpus processing. After the initial tag assignment program has run, every syntactic unit has one 
or more tags associated with it, and about 35 per cent are ambiguously tagged with two or more tags. Such words 
must be disambiguated by considering their context, and then re-ordering the list of tags associated with each word 
in decreasing order of preference, so that the preferred tag appears first. With each tag is associated a figure 
representing the likelihood of this figure being the correct one, and if this figure is high enough the remaining tags 
are simply eliminated. Thus, some ambiguities will be removed, while others are left for the manual
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post-editor to check. In most cases the first tag will be the correct one.

The disambiguation mechanism requires a source of information as to the strength of the links between pairs of tags: 
much of this information was derived from a sample taken from the already-tagged and corrected Brown corpus. 
Marshall (1987) reports that a statistical analysis of co-occurring tags in the Brown corpus yielded a transition 
matrix showing the probability of any one tag following any other, based on the frequency with which any two tags 
are found adjacent to each other. The values originally used by CLAWS were derived as the ratio of the frequency 
of the tag sequence 'A followed by B' in the Brown corpus divided by the frequency of the tag A in the Brown 
corpus, as shown in the following formula:

This transition matrix stored the conditional probabilities of 'tag B given tag A' derived in this way for each pair of 
tags A, B in the tag set.

Given a sequence of ambiguously tagged words, the program uses these one-step probabilities to generate a 
probability for each possible sequence of ambiguous tags. Consider a sequence where the second and third words are 
ambiguously tagged, such as w1 (A), w2 (B or C), w3 (D or E), w4 (F). To disambiguate w2 and w3, we must find 
the probabilities of the following sequences: A B D F, A C D F, A B E F and A C E F. Marshall gives an example in 
the sentence Henry likes stews. This would receive the following candidate tags from WORDTAG: Henry (NP), 
likes (NNS or VBZ), stews (NNS or VBZ),. (.).The full stop is given its own unambiguous category. For each of the 
four possible tag sequences spanning the ambiguity, a value is generated by calculating the product of the 
frequencies per thousand for successive tag transitions taken from the transition matrix, as shown below:

The probability of a sequence of tags is then determined by dividing the value obtained for the sequence by the sum 
of the values for all possible sequences. For example, the probability of the likeliest sequence NP-VBZ-NNS-. is 
26,460 divided by (11,475 + 629 + 26,460 + 0) or 69 per cent.

To find the probability that an individual word has a given tag, we find the ratio of the sum of the probabilities of all 
sequences where this word has this tag divided by the sum of the probabilities of all possible tag sequences. Using 
the Henry likes stews. example, the probability of likes being tagged as a plural noun is (11,475 + 679) divided by 
(11,475 + 629 + 26,460 + 0) or 31 per cent.
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If the length of the ambiguous word sequence is longer, or the number of alternative parts of speech at each point is 
greater, it may not be feasible to work out the product of the transition frequencies for every single possible 
sequence. To cater for such circumstances, the Viterbi algorithm is employed. At each stage in the Viterbi algorithm, 
only the n best paths encountered so far are retained for further consideration. Let us see what happens if we 
evaluate the Henry likes stews. example using the Viterbi algorithm where n = 2. The sequence is unambiguous as 
far as Henry, which can only be a proper noun, so this is our starting point. The word likes has just two 
interpretations, so both may be kept as a basis for future calculation. The word stews also has two interpretations, 
meaning that we now have  possible tag sequences. The likelihood of the sequence 

, the sequence NP-NNS-VBZ has likelihood , NP-VBZ-NNS has 
likelihood , and NP-VBZ-VBZ has likelihood  .The two sequences with greatest 
likelihood are therefore NP-NNS-NNS and NP-VBZ-NNS. The next word in the sequence is the unambiguous full 
stop. Only the best two sequences at the previous stage are now considered, so we calculate the likelihoods of the 
sequences NP-NNS-NNS-. and NP-VBZ-NNS-.There is no need for us to calculate the likelihoods of the other two 
possible sequences. Now that we have come to the end of the ambiguous word sequence, we find the likelier of the 
two most probable tag sequences. Thus, it may be seen that the Viterbi algorithm has the advantage of avoiding a 
number of calculations which increases with ambiguous sequence length and number of possible tags for each word, 
but it also has the disadvantage of sometimes missing the overall best sequence or 'global maximum'.

Both modes of calculation can be refined by the use of rarity markers for the candidate tags. A tag occurring less 
than 10 per cent of the time, labelled @, caused the sequence probability to be divided by two, and a tag occurring 
less than one per cent of the time, labelled %, caused the sequence probability to be divided by eight. These values 
were found by trial and error. Although the final version of CHAINPROBS contained further refinements, even the 
simple algorithm described here, which uses only information about frequencies of transitions between immediately 
adjacent tags, gave 94 per cent correct tagging overall and 80 per cent correct tagging for the words which were 
ambiguously tagged. Errors may arise due to

1. erroneous lexicon entries

2. the occasional reliance by WORDTAG on general suffix rules rather than individual words

3. errors from the transition matrix

4. relations between non-adjacent words.

Modifications were made after experimenting with different formulae for the calculation of the transition-matrix 
values. The final version of CHAINPROBS uses the formula (frequency of the tag-sequence 'A followed by B') 
divided by
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(frequency of tag A x frequency of tag B), as shown in the following formula:

Including the frequency of the second tag in the denominator reduces the tendency of the system to prefer individual 
high-frequency tags, so that low-frequency tags have more chance of being chosen. A second modification is that no 
value in the matrix should be zero, so a small positive value is associated with any transition that fails to occur in the 
sample. This ensures that even for texts containing obscure syntax or ungrammatical material, the program will 
always perform some analysis. The problem of errors involving relations between non-adjacent words, is 
exemplified by the fact that the word not is less useful in determining the category of the following word than is the 
word preceding not. not itself is unambiguously tagged XNOT, so a mechanism has been built into CHAINPROBS 
which causes not to be ignored, so that the words on either side are treated as if they were adjacent. At one stage the 
model, which is based on the probability of tag pairs, was bolstered by the addition of scaling factors for preferred 
and dispreferred tag triples. However, the incorporation of such information was found to degrade performance.

A part-of-speech tagger, such as the Cutting tagger or CLAWS, uses context to assign parts-of-speech to words, 
based on the probabilities of part-of-speech sequences occurring in text incorporated into a Markov model. The 
CLAWS system is an example of a first-order Markov model applied to the task of word tagging. CLAWS works in 
both directions, so according to Atwell (1987), when considering the likelihood of a candidate part-of-speech tag for 
a word, both the immediately preceding tag and the immediately following tag are taken into account. Higher-order 
models would take even more context into account, but would be computationally expensive.

4.1.2 The Cutting tagger

The implementation of a part-of-speech tagger based on a hidden Markov model which makes use of the Baum-
Welch algorithm is described by Cutting et al. (1992).The Cutting tagger models word order dependency. The 
transition probabilities in its underlying Markov model correspond to the probabilities of part-of-speech tags 
occurring in sequence. In a probabilistic parsing system such as CLAWS or the Cutting tagger, the observations are 
the words of the original text, and the set of output probabilities is the probability of the word given its part-of-
speech tag. The model is said to be hidden since we are able only to observe directly the ambiguity classes that are 
possible for individual words, where the ambiguity class of each word is the set of parts of speech that word can 
take, only one of which is correct in a particular context. The sequence of correct parts of speech given the context 
cannot be observed directly, so the most probable sequence must be inferred mathematically. The
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Cutting tagger can be trained from a relatively small training set of about 3000 sentences, using the Baum-Welch 
algorithm to produce maximum likelihood estimates of the model parameters A, B and π The most likely sequence 
of underlying state transitions (parts of speech) given new observations (the words in a test corpus) is then estimated 
using the Viterbi algorithm. The advantage of looking for sequences of tags rather than sequences of individual 
terms is that the number of tags will be much smaller than the number of individual terms, and thus a grammar based 
on tag sequences will be much simpler than one which considers all terms individually. Some tag sets, including the 
one used by the Cutting tagger, have additional categories to allow each of the commonest function words to belong 
to their own class.

4.1.3 Other applications of the Markov, model in natural language processing

Many authors have employed Markov models in text recognition. Forney (1973) reports how the contextual 
information inherent in natural language can assist in resolving ambiguities when optically reading text characters. 
Hanlon and Boyle (1992) describe how Markov models have been used for the recognition of cursive script. 
Candidate words with matching 'envelope' features or silhouettes are assigned from a lexicon in a pre-processing 
stage, and contextual information provided by a Markov model is then used to decide between candidate words. 
Lyon and Frank (1992), in their work on speech interfaces, make use of a Markov model to identify commonly 
recurring grammatical sequences.

4.2 Use of redundancy in corpus linguistics

While studying the relative frequencies of complementary grammatical features in a corpus of novels and scientific 
texts, Halliday (1991) found an interesting bimodal pattern. Pairs of grammatical features seemed either to be close 
to equiprobable, resulting in redundancy of less than 10 per cent, as in the case of the use of this and that, or had 
skewed relative frequencies, occurring in a ratio of about 0.9 to 0.1. For example, the ratio of the use of the active 
voice to the passive voice was 0.88 to 0.12. This ratio corresponds with redundancy of about 50 per cent.

4.3 An experimental method for determining the amount of information and redundancy: Shannon's game

Shannon (1949) states that everyone who speaks a particular language possesses knowledge of the statistical 
structure of that language, albeit unconsciously. For example, if someone is asked to guess the next letter in a text 
when all the preceding letters are known, the guesses will not be entirely random, but will be based on an intuitive 
knowledge of the probabilities and conditional probabilities of letters.

The approximate value of redundancy in a natural language can be found by
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the following simple experiment described by Paducheva (1963), which is one version of Shannon's game. A subject 
is asked to guess each letter in turn, starting with the first letter, in a text of definite length such as 100 letters. If any 
letter is not guessed correctly, the subject is told the right letter, then goes on to guess the next letter. The space 
between words is counted as one letter. The proportion of letters guessed correctly enables one to estimate entropy. 
For example, 50 letters guessed correctly out of a total of 100 letters shows redundancy at around 50 per cent. The 
same experiment can be performed using words or phonemes.

In another version of Shannon's game, described by Kahn (1966), the subject is also asked to guess the identity of 
each letter of a text starting with the first letter. This time, however, if the subject guesses incorrectly at any stage, he 
or she is not told the correct letter, but must keep on guessing until a correct guess is made. In this way we can 
record how many guesses a subject needed to determine the correct letter in an unknown text. The number beneath 
each letter in the example of Table 2.1 below gives the number of guesses one subject made.

Table 2.1 
Number of guesses made at each point in a text during Shannon's Game

 

Since the number of guesses required at each juncture reflects the degree of uncertainty or entropy at that point, 
Shannon's game shows that entropy is lowest at the start of new words and between morphemes.

4.4 Information theory and word segmentation

Juola, Hall and Boggs (1994) describe the MORPHEUS system which segments full words into their constituent 
morphemes, employing only the statistical properties of information theory. As a morpheme is the smallest unit of 
language that carries meaning, it may be semantic or syntactic, as in the word un-happi-ness which consists of not + 
happy + noun suffix. The division of words into their constituent morphemes or morphological analysis assists in 
corpus annotation (part-of-speech tagging and semantic code assignment) and dictionary construction. Another 
function is the stripping of derivational morphemes from the ends of words, so all grammatical forms such as 
singular and plural, present and past tense, of a word can be processed as one for document retrieval. Morpheme 
identification is difficult. There may be variant spellings of the same morpheme (such as happy and happi-) called 
allomorphs, or connecting vowels as in toxic-o-logy. One non-statistical method of morpheme identification is 
dictionary look-up, as described by Oakes and Taylor (1994), but this can be difficult for unfamiliar languages. The 
importance of identifying derivational morphemes in unknown languages is shown by the
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case of Linear B, described in Chapter 5, Section 4.1, where the identification of commonly occurring terminal 
sequences was a key step in the decipherment.

Since entropy is a measure of unpredictability, it is highest at morpheme boundaries. By gathering co-occurrence 
statistics on the letters of a language to derive the probabilities of bigram and trigram sequences, it is possible to 
estimate the entropy at each point in a word. The method used by Juola, Hall and Boggs to estimate the entropy at a 
given point in the word was to consider the probability of all trigrams beginning with the last two characters 
encountered in the word. They then substituted as the third letter each character of the alphabet in turn, and using the 
formula

summed the log probabilities of each possible trigram to calculate the entropy. In this way they identified points in 
the word where entropy was higher than at neighbouring points, i.e., reached a local maximum. Their heuristic for 
morpheme identification was that if the entropy after any letter in the word was greater than the entropy after the 
previous letter, a morpheme boundary has been found. Of the 79 words tested by Juola, Hall and Boggs, 37 were 
completely correct, five were partially correct and 37 were wrong. The partially correct responses were cases in 
which either some but not all morpheme boundaries were correct, or where the morpheme boundaries were plausible 
but wrong, as for the word noth-ing, interpreted as the gerund of the pseudo-verb to noth.

4.5 Information theory and secrecy systems

Shannon believed that similar techniques should be used for machine translation as have been used for the 
decipherment of secret codes. He wrote that in the majority of secret code ciphers, it is only the existence of 
redundancy in the original messages that makes a solution possible (see Kahn 1966). From this, it follows that the 
lower the redundancy, the more difficult it is to crack a secret code. Low redundancy can be introduced into a 
message by using letters with more equal frequencies than would be found in normal text (such as partially 
suppressing the use of the letter e in English text), exercising greater freedom in combining letters and the 
suppression of frequencies by the use of homophones.

Reducing redundancy by techniques such as undoubling the sequence  for Spanish messages will hinder the 
process of cryptanalysis. It follows that more text is needed to solve a low-redundancy coded message than one with 
a high-redundancy original text. Shannon quantified the amount of material needed to achieve a unique and 
unambiguous solution when the original message (or plain text) has a known degree of redundancy. He calls the 
number of letters unicity distance (see Denning 1982). One use of the unicity distance formula is in determining the 
validity of an alleged solution to a coded message or
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cryptogram. Shannon stated that if a proposed solution and key solves a cryptogram shorter than the unicity 
distance, then the solution is probably untrustworthy.

Shannon also wrote that a system of producing encrypted messages was like a noisy communication system. In 
information theory, noise is any unpredictable disturbance that creates transmission errors in any channel of 
communication, such as static on the radio, misprints, a bad connection on the telephone or mental preconceptions. 
It is also sometimes called thermal or white noise. Shannon states that the presence of noise means that the received 
signal is not always the same as that sent out by the transmitter. If a given transmitted signal always produces the 
same received signal, the effect is called distortion. However, the following discussion applies to cases where the 
same transmitted signal does not always produce the same received signal. If we call the entropy of the transmitted 

signal  and the entropy of the received signal , then  will be equal to  if there is no noise. We 

call the joint entropy of input and output , and also consider the conditional entropies  and . 

 is the entropy of the output when the input is known, and  is the entropy of the input when the output is 
known. All of these entropies can be measured on a per-second or a per-symbol basis, and are related by the 
following formula:

Imagine a source which transmits a message consisting only of the digits 0 and 1, which occur with equal frequency. 
The noise in the system causes 1 digit in 100 to be received incorrectly. Thus if a 0 is received (and hence the output 
is known) the probability that a 0 was transmitted is 0.99, and the probability that a 1 was transmitted is 0.01. These 
values would be reversed if a 1 were received. These probabilities are conditional, since they depend on the 

knowledge of the output symbol. , the entropy of the input when the output is known, is then found by 
summing the products of the conditional probabilities and their logarithms. In this example,

the conditional entropy  is called the equivocation, which measures the average ambiguity .of the received 
signal. In the worst case, where a message consisting of equiprobable 0s and 1s is so affected by noise that the 
outputs are virtually random, the equivocation will be 1 bit per symbol.

4.6 Information theory and stylistics

Kondratov (1969) describes the application of information theory to poetics, and in particular studied the entropy of 
Russian speech rhythms. Stress in Russian may fall on any syllable of a content word which has mandatory stress, 
while non-content words may be joined to the content words to form a single rhythmic word. Thus, monosyllables 
mainly merge with neighbouring words.
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The transcription method used by Kondratov to describe stress patterns in the spoken word was to use the number of 
syllables in a word as the base figure, and use a superscript figure to show the position of the stressed syllable. For 
example, 32 would denote a three-syllable word with the stress on the second syllable.

The frequencies with which each word type which occurred in selected texts drawn from five different genres was 
found, and were converted to entropy values

by applying Shannon's formula

where n was the number of distinct word stress patterns encountered. Taking into account the number of words and 
syllables in each of the test texts the quantities entropy per word and entropy per syllable were also found. Scientific 
texts had the highest entropy per word, while the poems of Lomonosov had the least entropy both per word and per 
syllable. Kondratov concluded that the Russian language imposes constraints which influence the rhythmical 
regularity of speech, and these constraints must be greater for poetry than for other genres.

4.7 Use of mutual information in corpus linguistics

Church et al. (1991) state that mutual information (MI) can be used to identify a number of interesting linguistic 
phenomena, ranging from semantic relations of the doctor/nurse type (where the strength of association between two 
content words is found) to lexico-syntactic co-occurrence preferences between verbs and prepositions (where the 
strength of association between a content word and a function word is found). The higher the mutual information, the 
more genuine the association between two words. A table of mutual information values can be used as an index to a 
concordance. Church et al. assert that 'MI can help us decide what to look for in a concordance; it provides a 
summary of what company our words keep'.

They compared MI for the words strong and powerful with each of the words in the Associated Press (AP) corpus. 4 
It was decided to compare the collocations of this pair of words because their meanings are so similar. Dictionaries 
are generally very good at identifying related words, but it is a more difficult task to describe exactly the subtle 
distinctions among related words such as near synonyms. The aim of this experiment was to describe the difference 
between two similar words in terms of their statistical behaviour. The top three scoring collocations in each case are 
shown in Table 2.2.

MI Word pair MI Word pair

10.47 strong northerly 8.66 powerful legacy

9.76 strong showings 8.58 powerful tool

9.30 strong believer 8.35 powerful storms

Table 2.2 
Highest scoring collocations of strong and powerful
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The fact that people prefer saying drink strong tea to powerful tea, and prefer saying drive a powerful car to a 
strong car cannot be accounted for on pure syntactic or semantic grounds. Such lexical relations are called 
idiosyncratic collocations and account for many English word combinations. Another example is that strong support 
is more plausible than powerful support. In order to prove this, we could say that powerful support is implausible if 
we could establish that MI (powerful, support) is significantly less than zero. However, we are unlikely to observe 
MI scores much less than zero because these would only occur in an extremely large corpus. A more sensitive test 
for examining the dissimilarity between words is the test, which is described in conjunction with the work of Church 
et al. in Chapter 1, Section 3.2.2.

As well as having applications in monolingual corpus linguistics, mutual information also has uses in multilingual 
corpora. For example, the automatic acquisition of bilingual technical terminology by Gaussier and Langeé (1994) is 
described in Chapter 4, Section 3.2.6. Luk (1994) proposes the use of mutual information for the automatic 
segmentation of corpora of Chinese texts into their constituent words, and his method is described in Chapter 4, 
Section 3.2.11.

5 The Relationship Between Entropy, Chi-Square and the Multinomial Theorem

For the mathematically curious, we can now link the work from this chapter with that from the last. Consider a 
random variable which can take any one of r different values each with probability , where i is in the range 1 to r, 
and the sum of all the , values is 1. For example,  could be the probability of each of the r categories of a 
linguistic form occurring in a segment of text. If this linguistic form is observed on n different occasions, and n1, n2, 
and so on up to  are the numbers of times each of the r categories is observed, then according

to the multinomial theorem, the probability P of a particular distribution of

categories is given by

where , and so on up to .

According to Herdan (1962), the formula for entropy may be derived from the multinomial theorem using Stirling's 
approximation (see Mood, Graybill and Boes 1974). If the observed relative frequencies in a sample of a corpus 

 are denoted by , and the relative frequencies in the corpus or language as a whole from the theoretical 
multinomial distribution are given by , we have

The sum in each case is over all values of i from 1 to γ. Herdan thus shows that the probability by the multinomial 
theorem is the sum of two different
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entropies, called the sample entropy 

and the modified population entropy 

He also shows that entropy is related to the chi-square measure. According to the formula of yon Mises (1931), 
when the number of observations is very great, the probability according to the multinomial theorem P is related to 
chi-square as follows:

Combining this with the expression for log P as the sum of two entropies, we obtain

The distinction between P and C is as follows. P is the likelihood of obtaining the observed data given a theoretical 
distribution (such as obtaining 12 heads and eight tails from a fair coin), while C is the likelihood of obtaining the 
observed data given a distribution estimated from the observed data (such as obtaining 12 heads and eight tails from 
a coin which gives heads to tails in the ratio 12:8). If

we can reject the null hypothesis (at the 5 per cent level) that the theoretical distribution and the actual distribution 
are equal.

6 Summary

In this chapter, arguments were given in favour of probabilistic rather than rule-based models of natural language. In 
particular, it is simply not feasible to construct an all-encompassing set of rules to cover every conceivable feature of 
natural language. In addition, a yes/no rule states only that a linguistic feature is allowed, but does not say anything 
about the commonness or rarity of that feature. An important class of probabilistic models, namely Markov models, 
is based on Shannon's theory of communication. This theory is concerned with the amount of information generated 
by the source of a message. The term information does not refer to the semantic content of a message, but to the 
freedom of choice we have in constructing messages. The measure of information is called entropy. The greater the 
randomness or freedom of choice in a situation, and the fewer the constraints on that situation, the greater the 
entropy.

Markov models are probabilistic or stochastic processes, which may be depicted using graphs consisting of nodes 
corresponding to states of the model and vertices corresponding to transitions between the states. Each type of 
transition has an associated probability, and each time a transition between states is made, a symbol is emitted. In the 
simple Markov model, each succeeding
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state of the model depends only on the present state, but it is possible to construct more complex Markov models 
with memory, whereby previous states are taken into account when determining the probabilities of the next 
transition. Shannon has shown that Markov models can account for most but not all of the statistical dependencies 
observed in natural language. In an observable Markov model, any given state always causes the same symbol to be 
output, but for a hidden Markov model, the choice of output symbol is a probabilistic function of that state. Thus, 
there are three parameters defining a hidden Markov model: the set of transition probabilities, the set of output 
probabilities for each state of the system and the initial probabilities of the model. When hidden Markov models are 
used in real-world applications, three important problems that must be solved are the evaluation, estimation and 
training of the model parameters. The Cutting tagger is a part-of-speech tagger based on a hidden Markov model, 
where the Baum-Welch algorithm is used to estimate the initial model parameters. Both the Cuttting tagger and the 
CLAWS tagger use the Viterbi algorithm to estimate the most likely sequence of parts of speech given a sequence of 
lexical words.

Jelinek advocates the use of perplexity as an objective measure of language model quality. Proposed changes to a 
model can then be evaluated by examining whether they succeed in reducing the perplexity of the model. An 
optimal code is one which enables a message to be encoded using the fewest possible symbols, given a fixed 
alphabet.

Redundancy is the factor by which the average lengths of messages are increased due to intersymbol statistical 
behaviour caused by the statistical constraints within a language such as unequal symbol probabilities. The amount 
of entropy and redundancy in natural language can be estimated using Shannon's game. Information theory can be 
used for word segmentation, since morpheme boundaries tend to occur at points of maximum entropy. Information 
theory also has applications in secrecy systems and stylistics.

Closely related to information theory is the concept of mutual information, which is a measure of the degree of 
association between two events. It has been used by Gaussier and Langeé to find the degree of association between 
pairs of technical terms in English and French found in parallel aligned corpora. Church et al. use mutual 
information for the identification of idiomatic collocations, while Luk uses this technique for the automatic 
segmentation of Chinese words.

In this chapter, therefore, we have seen what information theory and language modelling is, and how it has been 
used in corpus linguistics. By far the greatest contribution of information theory to date has been its ability to allow 
corpora to be part-of-speech tagged but this should not be allowed to overshadow those other potential uses for 
corpus linguistics that we have seen.
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7 Exercises

1. In Shannon's game, one subject correctly guessed the letters shown in capitals at the first attempt, but guessed 
incorrectly the letters shown in lower case, as follows:

tHE shabBY red cARPET

The spaces between words were counted as part of the test, and the subject guessed all of these correctly. Estimate the 
redundancy of English from this data.

2. a) Using the formula , find the entropy of the word SHANNON. Notice that 1/7 of the characters 
are S, while 3/7 of the characters are N.

b) Calculate what the entropy would have been if the characters S, H, A, N and O were equiprobable.

c) Using the formula , calculate the relative entropy of the word SHANNON.

d) Using the formula , calculate the redundancy of the word

SHANNON.

3. Consider the sentence The stock market run continues. Assume that The is always an article, stock could be a noun, 
verb or adjective, market could be a noun or a verb, run could also be a noun or a verb, and continues must be a verb. 
The matrix of transition probabilities derived from that used by CLAWS is as follows, where the first words are listed 
down the side and the second words are listed along the top:

Noun Verb Prep. Article Adjective Other

Noun 8 17 27 I 0 47

Verb 4 18 11 17 5 45

Prep. 22 4 0 46 6 22

Article 64 0 0 0 29 7

Adjective 72 0 5 0 3 20

Other 10 7 5 9 4 65
 

Using the Viterbi algorithm where the two most likely paths are retained at each step, find the most probable part of 
speech for each word in the sentence The stock market run continues.

8 Further Reading

Shannon's (1949) original account of his information theory is highly readable, and is recommended as a good 
introductory text. The application of information theory to linguistics is clearly and interestingly described by 
Paducheva (1963). Although Kahn's (1966) book is mainly about cryptography, it contains an interesting section about 
Shannon's work. It also contains a chapter called 'Ancestral Voices', which is relevant to the sections on decipherment 
in Chapter 5 of this book. Finally, The Computational Analysis of English, edited by
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Garside, Leech and Sampson (1987), has several good chapters on the theory of CLAWS and probabilistic 
approaches to computational linguistics in general.

Notes

1. Some have raised objections to this view. See Sperber and Wilson (1986).

2. Details of how to subscribe to this list can be found on the World-Wide Web at: http:// www. hd.uib. no/fileserv. 
html. Alternatively, an e-mail message may be sent to the list administrator at: corpora-request@hd.uib.no.

3. The number of calculations required is 2TxNT where T is the number of time steps in the model and N is the 
number of states in the model.

4. The Associated Press (AP) corpus consists of newswire reports in American English. The version used by this 
study consisted of 44.3 million words.
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3 
Clustering

1 Introduction

Willett (1988) describes clustering as the grouping of similar objects, and cluster analysis as a multivariate statistical 
technique that allows the production of categories by purely automatic means. Not only must similar objects be 
grouped, but dissimilar objects must remain distinct from each other. Two main types of clustering methods will 
described in this chapter; firstly, the related techniques of principal components analysis (PCA) and factor analysis 
(FA) which also group objects and variables; and secondly, cluster analysis techniques which require some 
calculation of the similarities between the objects to be clustered. Classification and categorisation are distinct 
concepts. Classification is the assignment of objects to predefined classes, while categorisation is the initial 
identification of these classes, and hence must take place before classification (Thompson and Thompson 1991). 
Categorisation is the task performed by the cluster analysis methods described in these sections. Anderberg (1973) 
states that automatic categorisation methods can be particularly valuable in cases where the outcome is something 
like 'Eureka! I never would have thought to associate X with A, but once you do the solution is obvious'. It is also 
clearly true that an algorithm can apply a principle of grouping in a large problem more consistently than a human 
can.

Clustering methods are said to be stable if the clusters do not change greatly when new data items are added; if small 
errors in the object descriptions lead to small changes in the clustering; and if the final categorisation does not 
depend on the order with which the data objects were encountered. Sneath and Sokal (1973) describe how cluster 
analysis was originally used mainly in the biological sciences, where it is referred to as numerical taxonomy. 
Nowadays, however, it is now used in many fields, including corpus linguistics, to perform such tasks as 
constructing a typology of English text types (Biber and Finegan 1986).

Section 2 of this chapter will describe how FA and PCA can be used for the clustering of variables in linguistics and 
in Section 3 we will cover the clustering
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of documents and corpus texts. In Section 4 we will see how terms can be clustered using their co-occurrence 
characteristics and approximate string matching techniques. Texts can be clustered according to similarities between 
the terms they contain, as described in Section 5, or on information theoretic grounds for sublanguage identification 
as described in Section 6. Finally, in Section 7, the clustering of dialects and languages will be described.

Occasionally in this chapter certain non-linguistic examples will be used, where this enables a point to be made as 
clearly and as simply as possible. The reader should not worry about having no knowledge of a particular 
application area and should concentrate instead on the general mathematical principles behind the example.

2 Reducing the Dimensionality of Multivariate Data

Woods, Fletcher and Hughes (1986) describe principal components analysis (PCA) and factor analysis (FA) as 
examples of multivariate techniques, where a number of variables are observed for each experimental subject, and 
we wish to summarise the information in the complete set of variables without designating any of the variables 
beforehand as either dependent or independent. In most quantitative studies, the conditions that are varied by the 
experimenter are called independent variables, while those variables whose response is being measured are called 
dependent variables (Butler 1985a). PCA and FA are methods of reducing the dimensionality of the data. That is to 
say, we attempt to reduce multivariate data to a single score for each subject, but retain most of the information 
present in the original data. For example, in the field of economics the retail price index is a single variable which 
summarises the fluctuations in the price of a large number of commodities, and the Dow-Jones index summarises the 
current price of a large number of shares. The advantage of using these measures is that one can make general 
statements about such factors as inflation without having to describe all the individual price changes. The 
disadvantage is that certain key data items might be concealed by the use of an overall index. For example, the Dow-
Jones index might rise while one's own shares fall. In the calculation of the retail price index, the prices of the items 
in a basket of commodities are recorded. The price of each item is multiplied by a preselected weight, then the 
weighted prices are all summed together. An example of such an index in corpus linguistics is Yule's (1939) index 
of diversity (described in Chapter 5, Section 2.3); a single value for a given text which summarises the occurrences 
of every distinct word in the text. Sometimes it is not possible to reduce multivariate data to a single score, but one 
can still reduce the number of variables on which each subject is scored without significant loss of information. PCA 
and FA are examples of clustering techniques where groups of variables are clustered into a smaller number of 
factors.
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2.1 Principal components analysis

Imagine the original data is in the form ( ), where the ith subject is scored according to each of p 
variables. According to Woods, Fletcher and Hughes (1986), PCA is a mathematical procedure for converting these 

p original variables into a new set of p variables denoted ( ) for the ith subject.

The end-point of a PCA is to calculate a set of numerical weights or coefficients. A subject's score on one of the new 
variables Yk is then calculated by multiplying the score on each of the original variables by the appropriate 

coefficient and then summing the weighted scores. If  is the score of the ith subject on the new variable, Yk, then 

, The set of coefficients  used to calculate a subject's 

score on the new variableé Yk are called the coefficients of the kth principal component, and  is the score of the 
ith principal component. The coefficients of the principal components are calculated to fulfil the following criteria as 
tabulated by Woods, Fletcher and Hughes (1986, p. 276):

1. The total variance of the principal component scores of the n subjects in the sample is the same as the variance of 
their scores on the original variables, i.e. 

.

2. The coefficients , of the first principal component are chosen so that VAR(Y1) is as large as 
possible. In other words, Y1 is constructed to explain as much as possible of the total variability in the original 
scores of the sample subjects.

3. The coefficients , of the second principal component Y2are chosen so that Y2 is uncorrelated with 
Y1, and Y2 explains as much as possible of the total variance remaining after Y<sb<1 has been extracted.

4. The coefficients , of the third principal component Y3 are chosen so that Ye is uncorrelated with 
both Y1 and Y2, and explains as much as possible of the total variance remaining after Y2 and Y2 have been 
extracted. This process continues until the coordinates of all p principal components have been obtained.

A simple non-linguistic example will now be given which clearly explains the principle of PCA. Jolicoeur and 
Mossiman (1960) used PCA to analyse measurements of the length, height and width of the carapaces of turtles. 
Their original data consisted of three dimensions, with X1, X2 and X3 being the length, height and width 
respectively of each turtle shell. In Table 3.1, the coefficients of principal components derived by Jolicoeur and 
Mossiman are given. From this data we can define the first principal component as 

 . Thus, a turtle shell with a length of 30 units, a height of 20 
units and a width of 10 units would have a score on the first principal component of 

.
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Component Y

Original dimension X Y1 Y2 Y3

length X1 0.81 -0.55 -0.21

height X2 0.31 0.10 0.95

width X3 0.50 0.83 -0.25

Table 3.1 
Coefficients of principal components from a PCA of measurements of turtle shells

 

The starting point for the PCA in this case was the variance-covariance matrix of measurements of a sample of turtle shells, 
as shown in Table 3.2. The values on the main diagonal (top left to bottom right) are the variances of the corresponding 
variables, while the other terms are covariances. The matrix is symmetrical, meaning for example that the covariance 
between X1 and X2 (which is the degree to which they vary together) is the same as that between X2 and X1. Covariance 
(COV) and variance (VAR) values can be calculated from raw scores using the formulae

and

where n is the number of experimental subjects, X1 and Y1 are the scores on the variables of interest for each subject, and 
 and are  the mean scores over all subjects for the two variables of interest.

length X1 height X2 width X3

X1 451.39 168.70 271.17

X2 168.70 66.65 103.29

X3 271.17 103.29 171.73

Table 3.2 
Variancecovariance matrix of measurements of a sample of turtle shells

 

From Table 3.2 we see that the total variance is 451.39+66.65+171.73=689.77 PCA gives a first principal component Y1 
with variance 680.40, which is 98.6 per cent of the total variance. Thus, almost all the variability in the three dimensions of 
the turtle shells can be expressed in a single dimension defined by the first principal component. The coefficients of the 
principal components were calculated from the values of the variancecovariance matrix rather than the actual measurements 
of the shells.

The process of reification is to interpret each component meaningfully. In
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the turtles example, the first component is a size component, since all three dimensions are weighted positively. The 
other two components are components of shape, where a shell will score highly on the second component if it is 
short, high and wide, and highly on the third component if it is short, high and narrow.

In the context of language, PCA might be used for language test scores. A group of subjects might be scored on a 
battery of language tests, where the subtests measure different abilities such as vocabulary, grammar or reading 
comprehension. Woods, Fletcher and Hughes (1986, p. 279) describe the purpose of PCA as then being 'to 
determine how many distinct abilities (appearing as components) are in fact being measured by these tests, what 
these abilities are, and what contribution each test makes to the measurement of each ability'.

Alt (1990) gives another simple non-linguistic example of the correlation between hours of sunshine and 
temperature in towns on the south coast of England being found to be 0.9. The correlation coefficient between these 
two variables can be represented pictorially by an angle of approximately 25 degrees between the two variables 
when they are represented by vectors, since the cosine of 25 degrees is approximately equal to 0.9. The purpose of 
PCA might then be to answer the question posed by Alt (1990, p. 50).'Can these two vectors be replaced by a single 
reference vector, known as a factor, such that the factor retains most of the information concerning the correlation 
between the original two variables?'

In order to summarise the two vectors (T representing temperature and S representing sunshine), one can bisect the 
angle between them to produce a reference vector called F1. The reference vector makes an angle of 12.5 degrees 
with both T and S. The cosine of 12.5 degrees describes the correlation between the reference vector and T and S, 
and is 0.976. The correlation between a variable and a factor is called the loading of the variable on the factor. The 
square of the correlation coefficient between two variables, r2, describes the amount of variance shared by these two 
variables, known as the common factor variance. The sum of the squares of the loadings of Tand S on F1, equal to 
1.9, is known as the extracted variance. If T and S each has a total variance of one, as would be the case when using 
standardised z scores, the maximum variance that could be extracted by F1 is 1+1=2. The percentage of variance 
extracted by F1 is therefore equal to 1.9/2=95 per cent, and thus F1 is a good summary of T and S, giving 95 per 
cent of the picture of the relationship between them. To account for the remaining 5 per cent of the variance, we 
must draw another vector F2 at right angles (orthogonal) to F1, which ensures that there is no correlation between 
F1 and F2, since the cosine of a right angle is 0.

The angle between T and F2 is 102.5 degrees, and the angle between T and F1 is 77.5 degrees. The loading of T on 
F2 is then the cosine of 102.5 degrees, which is-0.216. and the loading of S on F2 is the cosine of 77.5 degrees, 
which is 0.216. The amount of variance extracted by F2 is  which
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is approximately 0.1. Since 0.1/2/5 per cent, F2 has extracted the variance which remained unextracted by F2. We 
have thus completed PCA as summarised in Table 3.3.

Variables Factor

1 2

T 0.976 -0.216

S 0.976 0.216

Extracted variance 1.9 0.1

% total variance 95 5

Table 3.3 
Principal components analysis for temperature T and hours of sunshine S

 

The sum of the squares of the loadings of each variable on the factor (extracted variance) is referred to as the latent 
root or eigenvalue when using terms taken from matrix algebra.

Alt (1990) suggests that to get an idea of how vectors are resolved into factors in several dimensions one should 
imagine a half-open umbrella, where the radiating spokes of the umbrella represent vectors and the handle represents 
a factor. The cosine of the angle between a spoke (vector) and the handle (factor) is the loading of the vector on the 
factor, where the loading of a variable on a factor expresses the correlation between the variable and the factor. The 
factor (represented by the handle) will give a better description of some vectors (represented by spokes making 
small acute angles with the handle) than others (represented by spokes making larger acute angles with the handle). 
To obtain a better resolution of the spokes (vectors) making larger acute angles with the handle, we would need a 
second handle (or factor). This would correlate better with some but not all of the factors. A large number of factors 
would be required to resolve each of the spokes. This analogy is intended to emphasise the following three concepts 
(Alt 1990, p. 60):

1. a large number of vectors (variables) can be resolved into a smaller number of reference vectors known as factors

2. the loadings of variables on factors express the correlations between the variables on the factors

3. different variables will load differently on different factors.

Alt (1990, p. 61) goes on to say that

the idea behind PCA is to extract factors sequentially such that the first factor accounts for the maximum 
common factor variance across all the variables (i.e., more than any other factor that could be extracted), a 
second factor is then extracted which is at right angles to the first (orthogonal to it) such that it extracts the 
maximum amount of the common factor variance that remains. A third factor is constructed, again at right 
angles, until all the
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common factor variance has been extracted (or enough as makes no difference).

In each case, factors which lie at right angles to each other are uncorrelated, since the cosine of 90 degrees is 0.

2.2 Conversion of loadings to weights

There is no direct relationship between factor loadings and factor score weights. For example, if one variable has 
twice the loading of another on a particular factor, this does not mean that the first variable contributes exactly twice 
as much to the factor as the second variable. The method of inter-converting factor loadings and weights is not 
described here, 1 but in general variables with high loadings on a factor also tend to have high factor score weights 
on the same factor.

2.3 Deciding on the number of principal components and their interpretation

Many of the components extracted by PCA will produce little variation between the samples, with differences 
between them being due to random error. This enables us to eliminate about half of the components. Eastment and 
Krzanowski (1982) suggest that components should be successively added until the inclusion of further components 
adds more noise than useful information. If no computer program is available for the Eastment and Krzanowski 
technique, the following guideline is frequently used: if the original data has p dimensions, only those components 
which account for more than the fraction 1/p of the total variance should be retained.

The communality of a variable (the sum of all the common factor variance of the variable over all factors) is the 
variance it shares in common with the other variables. If the communality of a variable is below 0.3, it is generally 
felt that it does not contribute enough to be included in PCA. Another frequently used rule is that one should extract 
only factors which have latent roots greater than one. This rule works well when the number of variables is 20 to 50. 
It is also common that only those factor loadings above 0.3 or below -0.3 should be considered significant.

Sometimes it is necessary to identify components subjectively, as was done in the turtle shells experiment, and 
sometimes it is not possible to identify a component at all. The identification of components in PCA is an area in 
which more research is needed. One method of interpreting principal components is to examine the correlation 
between each component and every variable. If a component is highly correlated with a particular variable then the 
component contains nearly all the information about differences in the subjects expressed by their scores on that 
variable.

In Woods, Fletcher and Hughes's (1986) experiment on learners' subtests, the first component was highly correlated 
with all subtests, so the first
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component had to be general linguistic ability. In general, when using PCA, the first component corresponds with a 
general attribute such as overall size or intelligence, or whether the writer of a text in an English corpus is or is not a 
native speaker of English. Later components tend to pick out more interesting specific shapes or skills. For example, 
the third component was correlated highly with six different variables, all related to speaking ability.

The correlations between components and variables can be calculated using the formula

where vi is the variance of the ith component, sj is the standard deviation of the jth variable, rij is the correlation 
between the scores of the subjects on the ith principal component and the jth variable and ay is the coefficient of the 
jth variable on the ith principal component.

2.4 The covariance matrix and the correlation matrix

In the turtle shells experiment the principal components were extracted from the covariance matrix of the subjects' 
scores. Components can also be extracted from the correlation matrix of the subjects' scores, as is done when using 
SPSS. The apparent number and structure of the significant components in PCA can depend on which of these two 
matrices is used as the starting point for the analysis.

The correlation between two variables is the covariance of these same variables when they are standardised by 
conversion to z scores, done by calculating how many standard deviations a variable is above or below the mean. If 
the data consists of variables which are not measurable on a common scale, such as age, social class and relative 
vowel type usage, they should generally be standardised, whereas if the variables are all of the same type, such as a 
set of scores on different language tests, they should be analysed in their original form. For all variables standardised 
by conversion to z scores, the standard deviation is unity. Thus, if we commence the analysis with the correlation 
matrix, the correlation between a component and a variable is simply

2.5 Principal component analysis and spoken data: Horvath's study of vowel variation in Australian English

Horvath (1985) analysed speech samples of 177 Sydney speakers, to determine the relative occurrence of five 
different variants of each of five vowel sounds. Using this data, the speakers clustered according to such factors as 
gender, age, ethnicity and socio-economic class. This type of study is becoming possible in corpus linguistics due to 
the availability of spoken corpora such as the Spoken English corpus (SEC).
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According to Horvath, PCA is used widely in the social sciences for structuring large data sets into interpretable 
patterns. It is normally used with from 10 to over 100 variables. Other multivariate analyses such as 
multidimensional scaling are normally used with fewer than 10 variables. No variable should be included without a 
good theoretical or practical reason.

The original input to Horvath's PCA program consisted of the number of instances recorded in a speech sample for 
each variant of five vowel variables for each of the 177 Sydney speakers in the sample. The vowel variants were 
accented (A), ethnic broad (EB), cultivated (C), general (G) and broad (B). An example of the scores (number of 
occurrences of each vowel variant in speech) for one subject is given in Table 3.4.

iy ey ow ay aw

A C G B EB A C G B EB A C G B EB A C G B EB A C G B EB 01 910 0 0 2 10 8 0 0 8 5 7 0 0 0 
7 13 0 0 2 13 5 0

Table 3.4 
Number of occurrences in speech of each vowel variant provided by one Sydney speaker

 

In such a study, there should ideally be at least a 4: 1 ratio between subjects and variables. The first output of the 
PCA program was the matrix of correlations between the variables. The principal components were then extracted, 
along with their eigenvalues (the amount of variance accounted for by each component) and the component loadings 
(how the variables correlate with the principal component). For each subject, a speaker component score (that is, be 
a listing of each individual speaker in the data sample along with a component score for that speaker on each of the 
major principal components (PC)) was calculated as shown in Table 3.5. Four significant principal components were 
found.

Speaker 8 Speaker 17

PC 1 3.67 -2.37

PC 2 0.82 -1.78

PC 3 1.45 0.52

PC 4 -0.21 0.96

Table 3.5 
Sample speaker component scores

 

The individual speakers can then be clustered into groups of similar speakers by plotting them on graphs where their 
scores on principal components (PC1 and PC2, for example) are the axes, such as the one shown in Figure 3.1.

Each retained principal component is plotted against the others to achieve this clustering, enabling one to see the 
similarities between the individual
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Figure 3.1 
The Sydney speech community: core and periphery (PCl x PC2)

speakers. Speakers whose linguistic behaviour is similar according to the criteria of the two principal components 
will plot closely together, and those dissimilar will plot further apart. The figures on the graph show the number of 
speakers who should be plotted at that point in the graph. Groups of speakers whose linguistic behaviour is similar 
can thus be identified, although this visual process is partially subjective. The interpretation of these graphs involved 
three steps; namely, defining linguistic groups, describing the linguistic characteristics of these groups and defining 
the social characteristics of those groups. The clusters of speakers identified in this way were characterised both by 
their linguistic behaviour and by their social make-up, and thus were referred to as sociolects. The signs of the 
loadings of the first principal component are shown in Table 3.6.

accented ethnic broad cultivated general broad

iy + + - - -

ow + + - - -

ay + + 0 - -

aw + + - - -

ey + + - - -

Table 3.6 
Signs of the loadings for PC1 in Horvath's study of Sydney speakers

 

The first principal component split the Sydney speech community into two groups, which was clearly seen when PCl 
was plotted against PC2.Those speakers
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with negative speaker-component scores formed the core of the speech community while those at the other end of 
the scale with positive scores were said to form the periphery. For speakers on the periphery, the C, G and B variants 
all loaded negatively, while the A and EB variants loaded positively.

A plot of PC2 against PC3 showed subdivisions within the periphery, according to gender and socio-economic class. 
For example, sociolects 1 and 2 consisted of males and lower-working-class speakers, sociolects 3 and 4 were 
mainly females and middle-class speakers. The members of sociolect 4 were all female, while sociolects 2 and 3 
were mainly teenagers. Sociolect 1 had speakers of a predominantly English-speaking background and sociolect 4 
had speakers from predominantly Greek-speaking backgrounds. The core speech community which used only the C, 
G and B variants of the vowels, can also be further subdivided. It can be demonstrated that linguistic change is -
taking place if older speakers tend to be in one group, while younger speakers are in another. This phenomenon is 
seen in the core speech community, as PC4 clearly separates teenagers and adults. A similar study clustered speakers 
according to variation in consonants, intonation and written texts obtained through a survey of childhood 
reminiscences. This study is a good example of'eureka' clustering.

2.6 Factor analysis

Factor analysis (Spearman 1904) also determines the number of significant dimensions in a multivariate data set. For 
each extracted factor a set of loadings is obtained which are similar to the coefficients of principal components. In 
PCA, the variables of the principal components are assigned a unique set of variables, while in FA, through the 
process of factor rotation, the experimenter can choose a preferred solution from an infinite number of possible 
solutions. Examples of methods of rotation are the centroid method, principal-axes method, maximum likelihood 
method and Varimax. Rotating the factors does not change the total variance, but does alter the distribution of the 
variance across the factors. Rotation takes place so that loadings of moderate size found in PCA are either increased, 
or decreased to the point where they may be disregarded. The end result is that there are fewer variables that load 
significantly on a particular factor. Alt concludes that FA is not a pure mathematical procedure, since its success 
depends on an understanding of the phenomena being investigated. Owing to the complexity of the technique, 
computerised statistical packages such as SPSS are necessary to perform factor analysis.2

2.7 Factor analysis in corpus linguistics: the work of Biber and Finegan

Biber and Finegan (1986) and Biber (1988) describe their multi-feature multi-dimension (MFMD) approach to the 
examination of linguistic variation between text types. They use the term text type to describe the presence of 
linguistic features within a text, while the term genre is used to refer to the author's purpose in writing that text. The 
MFMD approach makes use of text corpora on
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computer (the Lancaster-Oslo/Bergen and London-Lund corpora) containing a wide range of texts and computer 
programs to count the frequency of linguistic features in each text. The potentially important linguistic features to be 
counted are chosen by a review of the research literature. Factor analysis is used to determine empirically which linguistic 
features tend to occur together in the texts. Finally, the text types are found using cluster analysis, grouping together texts 
which have the most similar linguistic features.

Having decided upon a set of potentially important linguistic features, the preliminary step to factor analysis is to 
calculate the correlation matrix of these variables based upon their patterns of co-occurrence. A method of converting co-
occurrence data into correlation coefficients is given in Chapter 5, Section 3.1. For example, Biber (1988) identified 67 
different linguistic features in a survey of the literature, then proceeded to derive a correlation matrix of those variables, 
from which factors could later be derived. The size of a correlation, positive or negative, shows to what degree two 
linguistic features vary together. Biber gives an example of a correlation matrix for four variables: first person pronouns 
(1PP), questions (Q), passives (PASS) and nominalisations (NOM). This hypothetical matrix is shown in Table 3.7.

1PP Q PASS NOM

1PP 1.00

Q 0.85 1.00

PASS -0.15 -0.21 1.00

NOM 0.08 -0.17 0.90 1.00

Table 3.7  
Correlation matrix for the co-occurrence of four linguistic variables

 

Two pairs of variables are highly correlated, first person pronouns and questions, and passives and nominalisations. All 
the other correlations are much lower. This intuitively suggests that two distinct factors will be identified from this matrix, 
one consisting of first person pronouns and questions, and the other consisting of passives and nominalisations. These two 
factors are largely uncorrelated with one another, since the linguistic features on the first factor have low correlations with 
the features on the second factor. A factor analysis of this correlation matrix might produce the following two factors:

Factor A = .82(1PP) + .82(Q) +. 11 (NOM) - .23(PASS)

Factor B =-.16(1PP)-.19(Q) + .91(PASS) + .76(NOM)

The values assigned to each of the linguistic features on each factor are called factor loadings. These do not correspond 
exactly with correlation coefficients, but indicate a similar pattern.

Factor scores are used to examine the relations among the genres and text types with respect to each factor. A factor score 
is computed for each text by
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summing the number of occurrences of the features having significant weights of 0.35 or more on that factor, then 
normalising according to text length. A third factor identified by Biber and Finegan, designated reported versus 
immediate style, had positive weights greater than 0.35 for past tense, third person pronouns and perfect aspect. 
Those features with negative weights greater than -0.35 were present tense and adjectives. Thus, the factor score for 
factor 3 was found by adding together, for each text, the number of past tense forms, perfect aspect forms and third 
person pronouns (the features with positive weights) and subtracting the number of present tense forms and 
adjectives (the features with negative weights).

Genres can be compared by arranging them in order of their mean factor scores found by averaging the factor score 
of all the texts in that genre. For example, Biber and Finegan analysed various genres according to their factor scores 
on their first factor, interactive versus edited text. Their results are shown in Table 3.8, where genres such as 
telephone speech and interviews are close together near the interactive end of the scale, and academic prose and 
press reportage are close together at the edited end of the scale.

320 Telephone and face-to-face conversation

260 Interviews

200 Spontaneous speeches

180 Prepared speeches

150 Professional letters

120 Broadcast

100 Romantic fiction

90 General fiction

40 Belles lettres, hobbies

30 Official documents, academic prose

20 Press

Table 3.8 
Factor scores obtained for various genres for interactive versus edited text

 

2.8 Factor analysis and a corpus of texts from the French Revolution

Geffroy et al. (1976) describe 'shifters' as being words which relate a text to the situation of communication. They 
used factor analysis to examine shifters in some texts of the French Revolution. Their first corpus of about 61,000 
words comprised 10 speeches (denoted R1 to R10) made by Robespierre between July 1793 and July 1794. Their 
starting point for FA was a frequency table where nij was used to denote the frequency of word i in text j. In factor 
one je and j' were at the far end of the negative loadings. This shifter was found to be associated with R10, the last 
speech made by Robespierre, also known as huit thermidor where he speaks to defend himself against accusations 
made by his enemies, making frequent use of the pronoun je, suggesting a situation of isolation.
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A second corpus of 34,500 words was made of writings by Hébert, comprising 23 issues of the revolutionary 
newspaper Pèere Duchesne from 1793, denoted H260 to H282. The most significant negatively-loaded feature of 
the first factor was the word nous. Nous acts as a shifter in the works of Hébert, because it occurs with both inclusive 
and exclusive meaning. Its inclusive form is seen in the first factor, since it co-occurs with ils, while its exclusive 
meaning is seen in the second factor, where nous and vous are both present. Hébert began to use the inclusive nous 
after the event called the Fêete de la Constitution on 10 August 1793. This inclusive nous marks the union achieved 
between the sans culottes of Paris and those of the départements.

When the works of Hébert and Robespierre were combined for a joint factor analysis, factor one had negative 
loadings for la, l', par and positive loadings for je, me, pas, j', ai, n', que, quand, on. This factor allows these two 
authors to be distinguished, since Robespierre's speeches score negatively and all the issues of Pèbe Duchesne score 
positively. Only Robespierre's final speech R10, which was characterised by a high use of je, was on the same side 
as the Hébert newspapers. Here FA was shown to be a means of differentiating between the styles of two different 
authors.

2.9 Mapping techniques

To represent the relationship between two variables one can draw a scatter plot. With three variables, 
interrelationships could be shown with a three-dimensional matchstick model, but there is no direct way of showing 
the relationships between four or more variables. For this we could examine scatter plots for all possible pairs of 
variables but this is not practical for large numbers of variables. It is possible to derive indirect representations of the 
interrelationships between more than three variables using a variety of techniques called mapping or ordination 
methods. These seek to represent the original dimensionality of the data in a reduced number of dimensions, usually 
two, without significant loss of information (Alt 1990).

All mapping and clustering techniques depend on a measure of how similar objects and variables, for example, are 
to each other. These techniques take as their starting points estimates of the similarities between each and every 
object or variable under investigation. Correlation coefficients provide indirect estimates of similarity, while 
judgements of object similarity made by respondents provide direct estimates of similarity. A variety of measures 
used to describe the similarity or difference (distance) between two measures will be described in Sections 3.2 to 3.5.

2.9.1 Principal coordinates analysis

Principal coordinates analysis is a variant of principal components analysis. The first principal component may be 
thought of as the best line of fit to all the other variables represented as vectors. The positions of all the variables can 
then
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be specified as points on the first principal component. This form of representation is best if the amount of variance 
accounted for by the first principal component is high. An improved representation is obtained by plotting the 
variables onto the two-dimensional plane defined by the first two principal components which are represented by 
two vectors (axes) at right angles to one another. This was done in the study by Horvath (1985) described in Section 
2.5, and illustrated in Figure 3.1.

2.9.2 Multi-dimensional sealing

Multi-dimensional scaling (MDS) is also a technique for constructing a pictorial representation of the relationships 
implied by the values in a dissimilarity matrix. There are many different mathematical methods and computer 
packages for carrying out MDS. The latter generally allow for non-metric scaling, where the rank order of 
dissimilarity between two elements is considered rather than the absolute magnitude. Provided non-metric scaling is 
used, the different methods tend to give similar results.

The technique of MDS was used by Miller and Nicely (1955) who produced a dissimilarity matrix for 16 different 
phonemes, depending on the proportion of occasions on which two phonemes were confused in noisy conditions. 
Although the phonemes were described initially by five different articulatory features or dimensions (voicing, 
nasality, affrication, duration and place of articulation), Shepard (1972), using this data, found a two-dimensional 
scaling solution, where all the phonemes could be depicted on the axes of nasality and voicing, as shown in Figure 
3.2. MDS is often carried out as an exploratory technique to see whether the data structure can be described by a two-
dimensional solution (Woods, Fletcher and Hughes 1986).

Figure 3.2 
Multi-dimensional scaling of data on the perception of speech sounds
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3 Cluster Analysis

In the field of information retrieval, it is often necessary to sift quickly through a large number of documents in 
order to find and extract those relatively few documents which are of interest. This task is facilitated by document 
indexing, where each document is represented by a convenient number of index terms. Document indexing may be 
done automatically or by human indexers. Similarly, anyone wishing to view certain documents can express the 
topic of interest as a set of individual terms called query terms. Documents are retrieved whenever there is a 
sufficient degree of match between the query and document index terms. Similarly, in corpus linguistics, a query is 
often presented to a corpus, and sections of text (not necessarily whole documents) are retrieved in response. The 
main difference is that the corpus texts are indexed not by terms specially assigned to represent a much larger 
quantity of text, but by the words in the text themselves. Modes of corpus annotation can also act as retrieval keys, 
where, for example, we might search for all adverbs in a stated section of the corpus.

The information retrieval process may be enhanced by document clustering, where groups or clusters of documents 
which are relevant to each other are stored in similar locations, whether electronically or on bookshelves. Van 
Rijsbergen (1979) reports that the cluster hypothesis which underlies the use of document clustering is that closely 
associated documents tend to be relevant to the same requests. Thus, if one document is known to be of interest, the 
whole cluster will probably also be of interest. The following sections describe various methods of document 
clustering. Similar methods can be employed for the clustering of texts in a corpus, but with somewhat different 
aims. Rather than the resulting clusters merely being an aid to fulfilling future retrieval requests, in corpus 
linguistics the clusters are linguistically interesting in themselves. For example, sections of text written by a 
common author, or belonging to a similar genre, or being written in a common sublanguage, might be brought 
together. In corpus linguistics, not only sections of text, but the various identifiable linguistic features such as case, 
voice or choice of preposition within a text may be clustered. However, in standard information retrieval, the only 
two elements which are routinely considered are the documents and their index terms. Thus the two main types of 
clustering discussed in the information retrieval literature are document clustering and term clustering. With term 
clustering, each term in a document index can be replaced by an exemplar of the cluster containing that term. A 
cluster exemplar is a description of an average or most typical example of a cluster member. Queries made to a 
document database can be broadened by the addition of other members of the cluster.
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3.1 Document clustering: the measurement of interdocument similarity

Document clustering analysis methods are all based in some way on measurements of the similarity between a pair 
of objects, these objects being either individual documents or clusters of documents (Wilier 1988). To deter-mine 
the degree of similarity between a pair of objects, three steps are required:

1. the selection of the variables that are to be used to characterise the objects

2. the selection of a weighting scheme for these variables

3. the selection of a similarity coefficient to determine the degree fresemblance tween the two sets of variables.

Citation clustering as described by Small and Sweeney (1985) involves measuring the degree of similarity between a 
pair of documents by the citations they share. However, in selecting the variables that are to be used to characterise 
the documents, it is more common to use document clustering techniques where documents are represented by lists 
of index terms, keywords or thesaurus terms that describe the content of the documents. With regard to the selection 
of a weighting scheme, Sneath and Sokal (1973) recommend that all the variables used in cluster analysis should be 
equally weighted. One reason is that in order to weight those attributes which are most important in determing the 
categorisation, such as attributes which rarely vary, we must know the categorisation in advance, so we cannot 
assign these a priori. Sneath and Sokal describe four main classes of coefficient for describing the degree of 
similarity between a pair of objects: distance coefficients, association coefficients, probabilistic coefficients and 
correlation coefficients.

3.2 Distance coefficients

According to Sneath and Sokal (1973), distance coefficients have intuitive appeal, and are often used to describe the 
evolutionary distance between two life forms or languages. Certainly distance measures are the most frequently 
applied. Distance is the complement of similarity, so two objects which are highly similar have little distance 
between them. In Euclidian distance, for example,

the distance between two documents can be calculated as follows. Imagine that one document j is indexed by the 
terms statistics, corpus and linguistics, and another document k by the terms corpus and linguistics. Each document 
can now be represented by a sequence of l s and Os according to whether each index term in the list (statistics, 

corpus, linguistics) is present or absent. For document j, the first index term statistics is present, so . The 
second and
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third index terms corpus and linguistics are also present for document j, so  and .For document k, the 

first index term statistics is absent, so . However, the second and third index terms corpus and linguistics 

are present, so  andX . Since we are considering a total of three index terms, n = 3. In order to 

solve the above equation, we must calculate  for every value of i in the range 1 to 3. 

, which multiplied by itself is 1. , which multiplied by itself is 

0. Similarly, , the square of which is 0. Adding together the squares of the differences 
found for each value of i, we get . Thus, the Euclidian distance between our pair of documents is 
the square root of I which is 1. Since Euclidian distance increases with the number of indexing terms used in the 

comparison, an average distance  is often calculated, as follows:

The general form of another class of distance measures, the Minkowski metrics, is

The notation  means that if x is negative, its sign must be changed to positive. If x is already positive, then it 
remains unchanged. If r = 1, the measure is called Manhattan distance or City Block distance. A variation of the 
Manhattan metric is the Canberra metric:

3.3 Association coefficients

Sneath and Sokal (1973) describe association coefficients as pair functions that measure the agreement in the 
attribute sets of two objects. Many of them measure the number of matches found in the two attribute sets as 
compared with the number of theoretically possible matches. According to Willett (1988), association coefficients 
have been widely used for document clustering. The simplest association coefficent is simply the value m, the 
number of terms common to a pair of documents. This measure has the disadvantage that it takes no account of the 
number of terms in each of the documents, and thus is not normalised. If we use the notation u to denote the number 
of unmatched terms, and n for the total number of index terms under consideration, then m can be normalised to 
form the simple matching coefficient:

For example, when comparing the two sets of index terms (carnation, lily,
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rose) and (daffodil, lily, rose), the terms lily and rose match, so m = 2. The terms carnation and daffodil are not 
matched in each other's set of index terms, so u = 2. Thus

.

Association coefficients are most common with two-state characters, coded 0 and 1, such as the presence or absence 
of a linguistic feature or index term. All these measures are derived from the contingency table, a two-by-two table 
in which the cells are labelled a, b, c and d. Cell a records the number of times both attributes are positive, while cell 
b records the number of times the attribute is present in the first object but not the second. Cell c contains the 
number of times the attribute was absent in the first object but present in the second, and cell d records the number 
of times the attribute was absent in both cases. The number of matches m = a + d, while the number of mismatches u 
= b + c. Using the contingency table, the simple matching coefficient is

Using the example of the two sets of index terms (carnation, lily, rose) and (daffodil, lily, rose), a = 2 
(corresponding to lily and rose which occur in both sets of index terms), b = 1 (since carnation occurs in the first set 
of index terms but not the second), c = 1 (since daffodil is found in the second set of index terms but not the first), 
and d = 0 (since in this example we do not consider any index terms which occur in neither set).Thus:

which is the same result as before.

The coefficient of Jaccard is given by

,

and the Hamann coefficient by

The product-moment correlation coefficient r, described in Chapter 1, Section 4.3.1, and adapted for data coded 0 
and 1 (denoting, for example, the presence or absence respectively of an index term) can also be calculated using the 
contingency table, and is given by

The wide variety of association coefficients described and tested by Daille (1995) are given in Chapter 4, Section 
3.2.4.
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3.4 Probastic similarity coefficients

Probabilistic similarity coefficients take into account the fact that a match between rare attributes such as individual 
open-class words is a less probable event than a match between commonly encountered attributes such as individual 
closed-class words in a corpus, and should thus be weighted more heavily. Examples of probabilistic similarity 
coefficients are joint information I(h,i) which can be calculated from the contingency table using the formula I(h,i) 
=  (where In represents log,) and mutual information. Both these 
measures are described in detail in Chapter 2, Section 2.7.

3.5 Correlation coefficients

According to Sneath and Sokal (1973), one of the most frequently employed coefficients of similarity in numerical 
taxonomy is the Pearson product-moment correlation coefficient calculated between pairs of attribute vectors. It may 
be used on data where most of the attributes can exist in more than two states. In order to compute this coefficient 
between attribute sets j and k, the following formula may be used:

where  is the attribute state value of attribute i in attribute set j,  the mean of all state values for attribute 
vector j, and n is the number of attributes taken into account. This measure is related to the cosine measure given by 
Salton and McGill (1983), which is used to measure the similarity between a document and a user's query, both 
represented by a set of index terms, and returning a value in the range -1 to 1:

 represents the weight or importance of term k assigned to query j  represents the weight of 
term k assigned to document i. The total number of index terms recognised by the matching system is t. If the two 
sets of index terms are considered as vectors in multi-dimensional space, the coefficient measures the cosine of the 
angle between documents or between queries and documents. The similarity between two vectors is inversely 
proportional to the angle between them, which is 0 if they are identical.

Sneath and Sokal suggest that one should use the simplest type of coefficient that seems appropriate. Such 
coefficients are often monotonic with more
  
< previous page page_114 next page >
 

If you like this book, buy it!

http://www.amazon.com/o/asin/0748610324/ref=nosim/duf-20


< previous page page_115 next page >
Page 115

complex measures, meaning that they provide the same rank ordering (vary up and down together).

3.6 Non-hierarchic clustering

The two main classes of document clustering methods are non-hierarchic and hierarchic. With non-hierarchic 
clustering the data set is partitioned into clusters of similar objects with no hierarchic relationship between the 
clusters (Willett 1988). Clusters can be represented by their centroid, which could be seen as the 'average' of all the 
cluster members, and is sometimes called a class exemplar. The similarity of the objects being clustered to each 
cluster centroid is measured by a matching function or similarity coefficient. Non-hierarchical clustering algorithms 
use a number of user-defined parameters such as:

1. the number of clusters desired

2. the minimum and maximum size for each cluster

3. the vigilance parameter: a threshold value on the matching function, above which an object will not be included in 
a cluster

4. control of the degree of overlap between clusters.

The number of clusters may be fixed beforehand or they may arise as part of the dusterrag procedure (van 
Rijsbergen 1979). Non-hierarchical algorithms can be tramformed into hierarchical algorithms by using the clusters 
obtained at one level as the objects to be classified at the next level, thus producing a hierarchy of clusters. In one 
version of a single-pass algorithm, the following steps are performed:

1. the objects to be clustered are processed one by one

2. the first object description becomes the centroid of the first cluster (van Rijsbergen 1979)

3. each subsequent object is matched against all cluster representatives (exemplars) existing at its processing time

4. a given object is assigned to one cluster (or more if overlap is allowed) according to some condition on the 
matching function

5. when an object is assigned to a cluster the representative for that cluster is recomputed

6. if an object fails a certain test (such as not matching any existing cluster sufficiently closely) it becomes the 
cluster representative of a new cluster (van Rijsbergen 1979, p. 52).

In the above procedure the first object description becomes the centroid of the first cluster, and thus we say that we 
have a single seed point, a seed point being whatever starts off a new cluster. There are a number of means whereby 
a set of k seed points can be used as cluster nuclei. The simplest method is to choose the first k units in the data set, 
but one must be sure that the data set is not already clustered. Alternatively one can subjectively choose any k units
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from the data set (so the data points are well separated) or use random numbers. Finally, if there are m objects to be 
clustered, the seed points can be spread throughout the sample by using object numbers m/k, 2m/k, 3m/k, and so on.

One example of a two-pass algorithm is MacQueen's (1967) k-means method. MacQueen's algorithm for sorting m 
data units into k clusters is composed of the following steps (Anderberg 1973):

1. take the first k data units in the data set as clusters of one member each

2. assign each of the remaining m-k data units to the cluster with the nearest centroid. After each assignment, 
recompute the centroid of the gaining cluster

3. after all data units have been assigned in step 2, take the existing cluster centroids as fixed seed points and make 
one more pass through the data set assigning each data unit to the nearest seed point.

This clustering process can be further refined by reassigmnent of data objects into more suitable clusters. Each data 
unit should be taken in sequence and one should compute the distances to all cluster centroids. If the nearest centroid 
is not that of the data unit's present cluster, then the data unit should be reassigned to the cluster of the nearest 
centroid and the centroids of both the original and new clusters should be updated. This process should be repeated 
until processing all the items in the full data set causes no further changes in cluster membership.

3.7 Hierarchic clustering methods

According to Willett (1988), hierarchical document clustering methods produce tree-like categorisations where 
small clusters of highly similar documents are included within much larger clusters of less similar documents. The 
individual documents are represented by the leaves of the tree while the root of the tree represents the fact that all 
the documents ultimately combine within one main cluster. Hierarchical clustering methods may be either 
agglomerative (the most commonly used type of clustering procedure) or divisive.

With an agglomerative strategy, one starts with the individual documents, then fuses the most similar pair to form a 
single cluster. The next most similar document pair or document-cluster pair is fused, and so on until the entire 
document set forms a single cluster. This means that if n documents are to be clustered, a total of n1 fusions must 
take place before all the documents are grouped into a single large cluster. With a divisive clustering strategy, we 
start with the overall cluster containing all the documents, and sequentially subdivide it until we are left with the 
individual documents. Divisive methods tend to produce motaothetic categorisations, where all the documents in a 
given cluster must contain certain index terms if they are to belong to that cluster. Agglomerative methods tend to 
produce polythetic categorisations, which
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are more useful in document retrieval. In a polythetic categorisation, documents are placed in a cluster with the 
greatest number of index terms in common, but there is no single index term which is a prerequisite for cluster 
membership. Clearly both types of categorisation are relevant to corpus analysis.

3.8 Types of hierarchical agglomerative clustering techniques

There are several hierarchical agglomerative clustering methods, including the single linkage, complete linkage, 
group average and Ward (1963) methods. All these methods start from a matrix containing the similarity value 
between every pair of documents in the test collection. Willett (1988, p. 581) gives the following algorithm which 
covers all the various hierarchical agglomerative clustering methods:

For every document (cluster) pair find SIM[i j], the entry in the similarity matrix,

then repeat the following:

Search the similarity matrix to identify the most similar remaining pair of clusters;

Fuse this pair K and L to form a new cluster KL;

Update SIM by calculating the similarity between the new cluster and each of the remaining 
clusters

until there is only one cluster left.

The methods vary in the choice of similarity metric and in the method of updating the similarity matrix. For 
example, in the average linkage method, when two items are fused, the similarity matrix is updated by averaging the 
similarities to every other document. 3 A worked example is given in Table 3.9 overleaf.

In Table 3.9(a) the original similarity matrix showing the similarity coefficients between each of five documents is 
shown.The greatest similarity of 0.9 is found between documents a and c, so these are merged to form a single node 
ac. The matrix is then updated to form the one shown in Table 3.9(b).The similarities between the new cluster ac 
and each of the other documents are found by taking the average of the similarity between a and the document and 
the similarity between c and the document. For example, the new similarity value for ac and bis the average of the 
similarity value for a and b and that for c and b. In Table 3.9(b) the greatest similarity value is 0.8, between 
documents b and d, so these two nodes are merged to form a cluster, and the matrix is updated to produce Table 3.9
(c). The greatest similarity value in this new matrix is 0.475, between the clusters ac and bd. These clusters are 
merged to form cluster abcd, and we obtain the final similarity matrix shown in Table 3.9(d). There is only one 
similarity value in the matrix, between cluster abcd and document e. Once these are merged, all the documents are 
included within a single cluster.
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a b c d e

a x 0.5 0.9 0.4 0.2

b - x 0.6 0.8 0.3

c - - x 0.4 0.1

d - - - x 0.2

e - - - - x

(a) Prior to clustering

ac b d e

ac x 0.55 0.4 0.15

b - x 0.8 0.3

d - - x 0.2

e - - - x

(b) After merging of nodes a and c

ac bd e

ac x 0.475 0.15

bd - x 0.25

e - - x

(c) After merging of nodes b and d

abcd e

abcd x 0.2

e - X

(d) After merging of nodes ab and cd



Table 3.9 
Clustering of documents using the average linkage method starting with a similarity matrix

 

The results of this clustering process can be represented by a tree-diagram or dendrogram. To construct this 
dendrogram, draw vertical lines upwards from each node or document, then connect these vertical lines by a 
horizontal line at the point of similarity at the time the nodes are merged. The dendrogram for the documents 
discussed in Table 3.9 is given in Figure 3.3 below.

The single linkage approach differs from average linkage in the way the similarity matrix is updated' after each 
merging of a node pair. At each stage, after clusters p and q have been merged, the similarity between the new 
cluster (labelled t) and another cluster r is determined as follows: If Sij is a similarity measure, denoting the 
similarity between nodes i and j, then Str= max(Spr, Sqr). Thus Str is the similarity between the two most similar 
documents in clusters t and r. The method is known as single linkage because clusters are joined at each stage by the 
single shortest or strongest link between them
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Figure 3.3 
Dendrogram for the clustering of five documents

(Anderberg 1973). Single linkage is the best known of the agglomerative clustering methods, and is also referred to 
as nearest-neighbour clustering, since any cluster member is more similar to at least one member of its own cluster 
than to any member of another cluster. The method tends to produce long chain-like clusters, which can be a 
problem if nodes at opposite ends of the chain are greatly dissimilar, since ideal clusters should only contain objects 
which are similar to one another.

Complete linkage, or furthest-neighbour clustering, differs from single linkage in that the similarity between clusters 
is calculated on the basis of the least similar pair of documents, one from each cluster. At each stage, after clusters p 
and q have been merged, the similarity between the new cluster (labelled t) and another cluster r is given by Str= min
(Spr, Sqr).The method is called complete linkage because all the documents in a cluster are linked to each other at a 
minimum level of similarity. The resulting clusters are a large number of small, tightly-bound groupings.

Ward's (1963) method joins together those two clusters whose fusion results in the least increase in the sum of the 
distances from each document to the centroid of its cluster.

The problem with using a similarity matrix as shown in Table 3.9 is that it becomes excessively large when 
significant numbers of documents are to be clustered. Most corpora are composed of a large number of documents, 
and so this is a genuine concern. As a solution to this problem, Anderberg (1973)
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describes the stored data approach, which differs from the stored matrix approach, in that similarity values are 
computed when needed rather than retrieved from storage. The steps are as follows:

1. for each row of the similarity matrix compute each similarity value, save the minimum/maximum entry in the row 
and record the column in which this extreme value occurs

2. search the row minima/maxima for the most similar pair

3. update the representation for the cluster resulting from the merger of the most similar pair. For each row involved 
in the merger, recompute the similarity values for the row and find a new row minimum/ maximum.

Willett (1980) describes an inverted file algorithm for the efficient calculation of interdocument similarities, which 
also avoids the creation of a similarity matrix.

3.9 The validity of document clustering

Clustering methods will find patterns even in random data, and thus it is important to determine the validity of any 
categorisation produced by a clustering method. One type of cluster validity study involves the use of distortion 
measures. These are quantitative measures of the degree to which the clustering method alters the interobject 
similarities found in the similarity matrix. The idea is to compare the results produced by different clustering 
methods on the same data. In general, methods which result in little modification of the original similarity data are 
considered superior to those which greatly distort the. interobject similarity data. The most common distortion 
measure is called the cophenetic correlation coefficient, produced by comparing the values in the original similarity 
matrix with the interobject similarities found in the resulting dendrogram. Conversely, Williams and Clifford (1971) 
suggest that the distortion of the similarity matrix is sometimes desirable because a clustering algorithm should try 
to find groupings that are more 'intense' than those present in the original similarity matrix. But whichever approach 
is adopted, clustering methods should be used with appropriate caution, and the issue of cluster validity should be 
considered in any study.

4 Approximate String Matching Techniques: Clustering of Words According to Lexical Similarity

Hall and Dowling (1980) describe the use of approximate string matching (ASM) techniques for finding an item in a 
stored lexicon when there may be a spelling mistake or some other error in a keyword input by a user. These 
techniques include truncation (considering all terms commencing with a given
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number of identical letters as equivalent), stemming (determining the equivalence of terms through prefix and suffix 
deletion and substitution rules) and n-gram matching (determining the similarity of terms based on common 
character sequences). These can all be used as similarity coefficients for the clustering of terms according to their 
lexical similarity.

ASM techniques are employed by a number of automated intermediary systems, which guide non-expert users of 
bibliographic databases to select terms used in indexing documents. When ASM techniques are used in vocabulary 
selection, all the terms retrieved in response to a single input word may be considered members of a common 
cluster. The advantages of performing such term mapping are:

1. the user will discover which grammatical forms or orthographical variants (if any) of the terms of interest are in 
the lexicon

2. such mappings may retrieve hitherto unanticipated terms which describe the user's information need more 
succinctly

3. the mapping considers not only everyday English word variants, but can also consider domain specific prefixes 
and suffixes such as di-, tri-, methyl-, -ate or -ol, which indicate chemical structure.

User feedback should then determine which of the resulting cluster or list of proffered keywords truly reflect the 
user's information need (takes and Taylor 1991).

There are a number of areas of interest to us in which ASM techniques are used in the development of spelling 
checkers (see Sections 4.9.1 and 4.9.2),'the automatic sentence alignment in parallel corpora where the same text is 
given in two different languages (see Section 4.9.3), and the identification of historical variants of modern words 
(see Section 4.9.4). ASM techniques enable words to be clustered according to their degree of lexical similarity to 
other words, but words can also be clustered on the basis of semantic similarity, as will be described later in this 
chapter. Section 5.1 covers Zernik's (1991) method of tagging word 'sense in a corpus, and in Section 5.2 Phillips 
(1989) uses the clustering of terms with related meaning to discover the lexical structure of science texts.

4.1 Equivalence and similarity

Both equivalence and similarity mappings are possible for words. If two character strings which are superficially 
different can be substituted for each other in all contexts without producing any difference of meaning, then they are 
said to be equivalent. Similarity is not necessarily transitive in this way; that is, if term A is similar to term B and 
term B is similar to term C, it does not necessarily follow that term A is similar to term C (Hall and Dowling 1980). 
Equivalence and similarity are key terms to consider in the course of the following pages.
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Truncation and stemming directly generate equivalence classes or cliques, where each term indexed by that class 
will be retrieved by any member of that class. On the other hand, n-gram matching such as that described by 
Adamson and Boreham (1974) and word co-occurrence-based term retrieval employ a real-valued similarity metric 
for the pairwise comparison of terms. In such cases we must later employ thresholding to determine which lexicon 
terms should be output in response to a given input term. If terms are to be deemed equivalent on the basis of an 
above-threshold real-valued metric alone, overlapping clusters will be generated. For example, a term such as 
bromopropylate might be deemed equivalent to chloropropylate on the basis of the character structures of these 
terms, and chloropropylate might be considered equivalent to chlorobenzilate. But bromopropylate would not be 
considered equivalent to chlorobenzilate due to the transitive nature of the relation between these terms.

4.2 Term truncation

With simple truncation, an equivalence class consists of all terms beginning with the same n characters. For 
example, the English term colour and the French term couleur begin with the same two characters. Paice (1977) 
reports that the disadvantage of truncation is that there is no ideal value for n. For example, if n = 6, the words 
interplanetary, interplay, interpolation and interpretation will be incorrectly assigned to the same family, while the 
words react, reacts, reaction, reacted, reactant and reactor will all be assigned to separate word families.Truncation 
can often be effective, and is quite simple; consequently it is often included (for example, by Paice 1996) as a 
baseline against which to compare more complex term clustering methods.

4.3 Suffix and prefix deletion and substitution rules

Several sets of rules exist for the removal and replacement of common suffixes, including those produced by Lovins 
(1969), Porter (1980) and Paice (1977, 1990). Suffix and prefix removal assist in the retrieval of grammatical 
variants from a lexicon by generating equivalence classes or cliques, where each term indexed by that class will be 
retrieved by any member of that class. A second potential advantage of recognising surffixes and prefixes 
automatically is that these processes will aid the task of morphological analysis (described fully in Section 5.3) 
where (a) terms may be tagged according to the part of speech they represent on the basis of their surffixes, and (b) 
prefixes and surffixes often yield valuable domain-specific information about the activity of a term or the part of the 
body it pertains to. For example, the term cardiopathy has the prefix cardio meaning heart and the suffix pathy 
meaning disease, also denoting that cardiopathy is a noun.

The simplest form of stemming is the reduction of all terms to their inflectional root, which is the singular form for 
nouns and the infinitive form
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for verbs. This results in only a small proportion of equivalent terms in the lexicon being recognised, but does not 
result in any non-equivalent terms being confounded. This type of stemming has been described as weak stemming 
by Walker (1988). Strong stemming is the removal of longer and more meaningful suffixes such as -isation, -ism 
and -ability. Strong stemming often changes the meaning of the input term, as illustrated by the example organ, 
organic, organism and organisation. If one is to employ strong stemming, some form of human feedback is required 
to decide whether the stem is relevant or not. Stemming rules have also been produced for the French (Savoy 1993), 
Latin (Schinke, Greengrass, Robertson and Willett 1996), Malay (Ahmad, Yusoff and Sembok 1996) and Turkish 
(Kibaroglu and Kuru 1991) languages.

The rule sets for the removal and replacement of common suffixes cited above are given in the form of production 
rules. Production rules are defined by having both a condition and an associated action. Whenever the condition is 
true (in this case a particular suffix is identified), the action takes place (the suffix is removed or replaced, and the 
next rule is selected). Some of Porter's (1980) rules have more complex associated conditions, where rules may only 
become active if (a) the suffix is identified and (b) the suffix occurs in a given context. For example, the suffix -ing 
is removed only if the preceding consonant is undoubled. All these rule sets reduce terms to their 'derivational' mots, 
reducing, for example, the term experimental to experiment, where experiment is said to be the base form or lemma 
of the equivalence class. The entire rule set of Paice (1977) is reproduced in Table 3.10.

Starting with the rule at the top of the table, the endings in Column 2 are matched sequentially against the endings of 
the word being processed. When a match is found, the input word ending is removed and replaced by the ending 
shown in the third column. If the entry in the third column is null (denoted -), the ending is removed but not 
replaced. The process then terminates if the entry in Column 4 is finish, but otherwise continues from the rule 
indicated in that column. Paice states that it does not matter whether this process reduces the term to its linguistically 
correct root, provided (a) members of a word family are reduced to the same root, and (b) members of different word 
families are reduced to different roots. On this basis the lexical clustering of text can proceed.

Oakes (1994) describes a method of creating one's own domain-specific prefix and suffix rules. The first task is to 
produce an alphabetic list of domain terms, such as the Derwent Drug File Thesaurus (1986) which consists of 
pharmacology terms. One must then select the minimum root length, where only word pairs which match for this 
number of characters are initially considered to be in the same family. If two adjacent words match up to this root 
length, the terms should be matched up to the point of divergence, then both divergent endings stored. For example, 
if the minimum root length is four, the terms followed and following match beyond this point for two further 
characters.
  
< previous page page_123 next page >
 

If you like this book, buy it!

http://www.amazon.com/o/asin/0748610324/ref=nosim/duf-20


< previous page page_124 next page >
Page 124

Label Ending Replacement Transfer

-ably go to IS

-ibly finish

-ly go to SS

SS -ss ss finish

-ous finish

-ies y go to ARY

-s go to E

-ied y go to ARY

-ed go to ABL

-ing go to ABL

E -e go to ABL

-al go to ION

ION -ion go to AT

finish

ARY -ary finish

-ability go to IS

-ibility finish

-ity go to IV

-ify finish

finish

ABL -abl go to IS



-ibl finish

IV -iv go to AT

AT -at go to IS

IS -is finish

-ific finish

-olv olut finish

- finish

Table 3.10 
The term conflation rules of Paice (1977) for suffix replacement and removal

 

The distinct endings after the point of divergence are -ed and -ing, which are stored in a suffix frequency table. Once 
all adjacent word pairs in the lexicon have been considered, the frequency of each stored prefix is found. The list of 
most common suffixes, after manual post-editing to remove a proportion of nonsense suffixes, should yield a list of 
suffix-removal rules. To overcome the problem of overlapping suffixes, longer suffixes such as -tic should be placed 
in the table before shorter ones such as -ic. The same technique is used to create prefix-removal rules, except than 
one should begin with an alphabetic list of reversed lexicon terms. Using the Derwent Drug File Thesaurus, the 
following most common meaningful suffixes were identified: -in, -al,-ine,-ium,-mycin, -ate,
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-amycin, -ic, -ol, -s, -an, -feron. The corresponding prefix list was: a-, di-, an-, intra-, me-, para-, bi-, pro-, dia-, al-, 
micro-.

Paice describes how prefix removal is more difficult than suffix removal, since the removal of a prefix will often 
radically alter the meaning of a word, as

shown by consideration of the following two word families:

coordinate, inordinate, subordinate, ordinate

bisect, dissect, insect, intersect, sect.

4.4 Clustering of words according to the constituent n-grams

The use of stemming rules requires effort in the setting up of a suffix dictionary, and the use of look-up techniques 
during the processing of text. These problems may be overcome using the technique of Adamson and Boreham 
(1974). This is an automatic classification technique for words written in a given phonetic alphabet, based on the 
character structure of the words. In general, the character structure of a word may be described by its constituent n-
grams, where an n-gram is a string of n consecutive letters all belonging to a standard alphabet (Yannakoudakis and 
Angelidakis 1988). Adamson and Boreham consider the number of matching bigrams (pairs of consecutive 
characters) in pairs of character strings, and employ Dice's (1945) similarity coefficient to cluster sets of terms from 
a chemical database. If a and b = total number of bigrams in the word A and B respectively, and c = number of 
bigrams common to A and B, then Dice's coefficient of similarity between A and B = 2c/(a + b). For example, the 
words pediatric and paediatric may be divided into bigrams as follows: pe-ed-di-ia-at-tr-ri-ic and pa-ae-ed-di-ia-at-
tr-ri-ic. The number of bigrams in each word is eight and nine respectively, giving a total of 17. The number of 
matching bigrams c is seven, so 2c/(a + b) = 14/17 = 0.82. Dice's similarity coefficient is a real-valued similarity 
metric which has a value of zero if two terms are totally dissimilar in their character structures, one if two terms are 
identical or a value in-between if the character structures of the two terms partially match.

Input terms can be compared against each term in a corpus or lexicon to find those terms which have the greatest 
coefficient of similarity with respect to the user input term. Either the N most similar terms or all terms with an 
above-threshold coefficient of similarity are shown to the user, and if any of these are appropriate, they may be 
selected. Such a method can perform the function of prefix removal. It should also perform the function of a 
stemmer for suffix removal, with the advantage that it will cater for unanticipated suffixes, which would not be 
included in any suffix library. It should deal adequately with alternative spellings, such as Americanisation, as 
shown by the paediatrics / pediatrics example.

Angell, Freund and Willett (1983) describe a related method of comparing misspellings with dictionary terms based 
on the number of trigrams that the two strings have in common, using Dice's similarity coefficient as the measure
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of similarity. The misspelt word is replaced by the word in the dictionary which best matches the misspelling. They 
found that this resulted in the correct spelling being retrieved over 75 per cent of the time, provided that the correct 
version was in the dictionary. According to Mitton (1996), some trigram-based methods give more weight to some 
letters than to others. For example, letters at the front of a word might have more weight than letters at the end of a 
word, which in turn have more weight than letters in the middle of the word. In other systems, consonants may be 
given more weight than vowels. The system of Robertson and Willett (1992), described in Section 4.9.4, includes 
null characters at the start and end of words and thus effectively weights the characters at the front and end of the 
word more highly than the characters in the middle of the word.

Riseman and Hanson (1974) keep a record of all the trigrams which occur in the entire dictionary, and store these in 
a look-up table. To check the spelling of an input word, it is first divided into trigrams and each trigram is searched 
for in the table. If any input word trigram is found which does not occur in the table of dictionary trigrams, the input 
word is deemed to be a misspelling. This technique can detect errors made by an optical character reader, but is less 
appropriate for the identification of human spelling errors, as many of these, in particular real-word errors, do not 
include trigrams that never occur in the dictionary. Morris and Cherry (1975) divide input text into trigrams. They 
calculate an index of peculiarity for each word according to the rarity of its constituent trigrams. Mitton concludes 
that the advantage of n-gram based techniques is that they can be used for any language.

4.5 Longest common subsequence and longest common substring

Joseph and Wong (1979), in their work on the correction of misspelt medical terms, consider how many sections of 
the shorter string are present in the longer string. This is related to the problems of finding the longest common 
subsequence and the longest common substring.

Hirschberg (1983) defines the notions of a subsequence and a substring as follows: string a is a subsequence of 
string b if string a could be obtained by deleting zero or more symbols from string b. For example, course is a 
subsequence of computer science. A string c is a common subsequence of strings a and b if it is a subsequence of 
both. If string a can be obtained from string b by deleting a (possibly null) prefix and/or suffix of b, then we say that 
string a is a substring of string b. For example, our is a substring of course. A string c is a common substring of 
strings a and b if it is a substring of both. The main difference between a substring and a subsequence is that the 
substring consists of characters which must occur consecutively in the full string, while a subsequence consists of 
characters in the same order as they appear in the full string, although they need not appear consecutively in the full 
string. Algorithms for finding the longest common subsequence and longest common
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substring automatically have been given by McCreight (1976) and Wagner and Fischer (1974).

The notions of a longest common subsequence and a longest common substring are used in the definitions of various 
string to string dissimilarity measures. For example,

Coggins (1983) describes the following dissimilarity measures for clustering strings such as the character sequences 
of words:

where d(a,b) is the dissimilarity measure for strings a and b, length(a) and length(b) are the lengths in characters of 
strings a and b respectively, and q(a,b) denotes the length of the longest common subsequence between strings a and 
b.

where s(a,b) is the length of the longest common substring between a and b.

where char(a) gives the number of different characters from the alphabet used in string a, char(b) gives the number 
of different characters from the alphabet used in string b, and c(a,b) gives the number of different characters from 
the alphabet that x and y have in common. From the above three dissimilarity measures, the following composite 
measures may be derived:

Other weightings and combinations are possible.

4.6 Dynamic programming

Wagner and Fisher (1974) consider insertion of a character into a string, deletion of a character from a string and 
substitution (replacing one character of a string with another) in their dynamic prong system. In the unweighted 
case, each of these three operations is considered equally likely, and the distance between two strings is simply the 
least number of operations required to transform one string into another. For example, in order to transform the 
English word colour into the French word couleur, two operations are required: c=c, o = o, u deleted, l = l, e 
substituted by o, u = u, r = r.A more common measure is the weighted Levenshtein distance, where the cost of a 
substitution is two, while the cost of insertion or deletion remains at one. In the colour/couleur example we have one 
deletion and one substitution, so the weighted Levenshtein distance between them is three.

Kruskal (1983) describes the dynamic programming algorithm as follows:

Let m be the number of characters in the first string, and n be the number of characters in the second. 
Wagner and Fischer's matrix-filling algorithm
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computes d by constructing an (m + 1) by (n + 1) matrix, where the columns are labelled 0 to m and the 
rows are labelled 0 to n. The entry in cell (ij) is the distance between the first i characters of word m and 
the first j characters of word n. The procedure is to calculate all the intermediate distances in the array, 
starting from the (0,0) cell in the upper left-hand corner, and moving towards the (m,n) cell in the lower 
right-hand corner. The value in the (0,0) cell is always 0, which is the distance between two empty 
sequences (nothing and nothing). The calculation of the values in the other cells then proceeds recursively 
as follows:

The values in all the other cells (i,j) are based on the values in the three predecessor cells (i-1,j) (i-1,j-1) 
and (ij-1). However, if i = 0 or j = 0, the two predecessor values involving negative values of i or j are not 
used. For each cell, three calculations are made:

the value in cell (i-1, j) plus the cost of deletion of the ith character in string a

the value in cell (i-l,j-1) plus the cost of substituting the ith character in string a (ai) by the jth character in string b 
(bj). The cost of substituting characters ai and bj is 0 if ai = bj

the value in cell (i,j-1) plus the cost of insertion of the ith character in string a.

The value in cell (i,j) is the minimum of these three. In each case we add the cost of arriving at a state one operation 
away from transforming the first i characters of a into the first b characters of j plus the cost of that final operation. 
We cannot calculate the value in any cell before the values in the predecessors of that cell have been found, but 
otherwise the order of calculation is not important.

In the following example, illustrated in Table 3.11, the cost of transforming the word cart into cot is found using 
weighted Levenshtein distance, where the cost of insertion and deletion is one, and the cost of substitution is two if 
the substituted characters differ, and zero if a character is substituted for itself. For example, the entry shown in 
Column 2, Row one, shows the cost of transforming the first two characters of cart (ca) into the first one character 
of cot

0 1 2 3 4

c a r t

0 0 1 2 3 4

1 c 1 0 1 2 3

2 o 2 1 2 3 4

3 t 3 2 3 4 3

Table 3.11 
The cost of transforming cart into cot
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(c), which is 1 for a single deletion. The entry in Column 4, Row 3 R (the bottom right hand corner) shows the final 
result of the evaluation: the cost of transforming cart into cot is three.

Further extensions to the basic dynamic programming technique have been suggested. Lowrance and Wagner (1975) 
have extended this procedure to allow transposition of adjacent characters, by including in the minimisation function 
the quantity d(i-2,j-2) + the cost of substituting with ai-1 with bj. + the cost of substituting bi-1 with aj). Gale and 
Church (1993) in their work on sentence alignment, include three new operations in addition to those included by 
Wagner and Fischer. These are: expansion (one unit in the first string is replaced by two units in the second), 
contraction (two units in the first string are replaced by one in the second) anti merging (two units in the first string 
are substituted for two in the second).

The dynamic programming procedure described above gives the alignment distance between two strings. If a record 
is kept of which operations were employed to arrive at each cell value by the use of pointers, then starting with the 
final cell (m,n) and using the pointer information repeatedly, we can obtain the actual path taken through the matrix 
all the way back to cell (0,0). One potential use of this is that when comparing word pairs where one word comes 
from one language and one word from another, we can keep a record of exactly which letters were involved in the 
transformation process. In this way we can observe transformations which regularly occur between cognate words of 
a given language pair, such as the French é regularly being replaced by the English s.

4.7 Speedcop

Pollock and Zamora (1984) describe SPEEDCOP Spelling Error Detection/ Correction Project), an algorithm for 
correcting misspellings that contain a single error and whose correct forms are in a dictionary, as a coding method 
used for the identification of spelling errors in scientific databases produced by the chemical abstracts service. The 
codes are designed so that the codes of a misspelling and the corresponding correct word are identical or at least 
resemble each other more closely than do the original words (Robertson and Wilier 1992). The SPEEDCOP system 
enables a measure of similarity between words. If the entire dictionary is transformed into SPEEDCOP codes and 
these codes are then sorted alphabetically, the similarity between a pair of words is the number of entries apart they 
are in this alphabetic list.

Two different types of code were developed, the skeleton key and the ommission key. Pollock and Zamora describe 
how the skeleton key is constructed by concatenating the following features of the string:

the first letter

the remaining unique consonants in order of occurrence (thus doubled consonants must be undoubled where 
necessary)

the unique vowels in order of occurrence (with the exception that if
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the first letter is a vowel, it will appear again in the code if it appears later in the original word).

For example, the word chemical is encoded as chmleia. The rationale behind these coding measures is

the initial letter is generally correct

consonants carry more information than vowels,

even in misspellings, the original consonant order is mostly preserved, and

the code is unaffected by the doubling or undoubling of letters or most transpositions, features of typical spelling 
errors.

The main idea is that strings which appear similar have closely related keys, and

thus subjective plausibility is more important than objectively measured similarity. The main weakness with the 
skeleton key is that an incorrect consonant early in a word will cause it to be coded very differently to the desired 
word and thus to be sorted far apart in an alphabetic list of codes. To overcome this problem, the omission key was 
developed. Pollock and Zamora found that consonants were omitted from words in the following frequency order: r 
s t n l c h d g m f b y w v z x q k j (thus r is omitted most often). The omission key for a word is constructed by 
sorting its unique consonants in the reverse of the above frequency order and then appending the vowels in their 
original order. Letter content is thus more important than letter order in the construction of the omission key. An 
example of the omission key is that circumstantial becomes mclntsriua.

The SPEEDCOP program corrects between 85 and 95 per cent of the misspellings for which it was designed. It also 
incorporates a common misspelling dictionary which contains keys to commonly misspelled words, and a function-
word routine. Sometimes it is necessary to perform some form of ambiguity resolution to select between more than 
one potentially correct spelling of a misspelled word. For example, the input term absorbe might be intended to be 
absorb by deletion, absorbed by insertion or absorbs by substitution. Experiments showed that the order of 
precedence of these operations should be deletion = transposition > insertion > substitution, and thus the intended 
word is most probably absorb.

4.8 Soundex

The Soundex system which was originally developed by Margaret K. Odell and Robert C. Russell (see Knuth 1973) 
is also used as an aid to spelling correction. Both input words and dictionary words are again converted to codes, 
with the aim that a misspelled word should have the same Soundex code as the correct version of the word. The 
system has been used in conjunction with airline reservation systems and other applications involving surnames 
when these could be misspelled due to poor handwriting or voice transmission. The aim here is to transform all 
variants of a surname to a common code. The Soundex code is generated as follows (Knuth 1973, p. 392):
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1. Retain the first letter of the name, and drop all occurrences of a,e,h,i,o,u,w,y in other positions.

2. Assign the following numbers to the remaining letters after the first: 
b,f,p,v: 1 
c g j k q s x z:2 
d t: 3 
1:4 
m n: 5 
r: 6

3. If two or more letters with the same code were adjacent in the original name (before step 1) omit all but the first

4. Convert to the form 'letter digit digit digit' by adding terminal zeros (if there are less than three digits) or by 
dropping rightmost digits (if there are more than three).

Knuth gives the example that the names Euler, Gauss, Hilbert, Knuth and Lloyd have the codes E460, G200, H416, 
K530 and L300 respectively. The same codes will be obtained for the unrelated surnames of Ellery, Ghosh, 
Heilbronn, ,Kant and Ladd. Conversely, some related names like Rogers and Rodgers, or Sinclair and St Clair, are 
not transformed to identical Soundex codes. In general, however, the Soundex code greatly increases the chance of 
finding a surname given a close variant. Both the SPEEDCOP and Soundex systems have been used by Robertson 
and Willett (1992) for the identification of historical variants of words given their modern forms. These experiments 
are described in Section 4.9.4.

4.9 Corpus-based applications of approximate string matching

4.9.1 Typical spelling errors

The ASM techniques of truncation, stemming, n-gram, subsequence and substring matching give equal weight to all 
the characters considered in the analysis. The relative frequency of each character is not considered, nor is the fact 
that certain characters may be more commonly substituted for others within groups of spelling variants. The word-
matching techniques of weighted dynamic programming and the SPEEDCOP and Soundex systems, on the other 
hand, all depend on prior analyses of the relative occurrences of actual spelling errors. In order to make such 
analyses, a number of authors have built corpora of teal-life spelling errors.

Mitton (1996) describes a corpus of English spelling errors consisting of a collection of ten-minute compositions on 
the topic Memories of my primary school. This was designed to conform with the ideals of including a cross-section 
of adults rather than children and using free writing rather than spelling tests or psycholinguistic experiments such as 
the Cloze test.

He writes that real-word errors (such as forth for fourth) are the most difficult for spelling checkers to deal with, and 
are relatively common: about 40 per cent of the errors in his corpus were of this type. Real-word errors may be 
wrong-word errors, where some other word was written in place of the correct one.
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The commonest wrong-word errors in the corpus were too/to, were/where, of/off and their/there. A second class of 
real-word errors involves the use of a wrong form of the intended word rather than the use of a different word 
altogether. The most common single error of this type was use to for used to. A third class of real-word errors were 
words incorrectly divided into two simpler words, such as my self or in side. Mitton found that in 93 per cent of 
cases, misspellings were correct in the first letter, and many of those cases in which the first letter was incorrect 
involved silent first letters as in know and unite.

Slips and typos were described as errors that occur when people know how to spell a word but accidentally write or 
type something else. Damerau (1964) found that about 90 per cent of typing errors are single-error misspellings. Of 
these, the four most common types are insertion (one extra character inserted into the string), omission (one 
character removed from the string), transposition (where two adjacent characters in the string are interchanged) and 
substitution (one character in the string is replaced by another). According to Mitton, omission can occur when the 
key is not struck hard enough, especially when using the little finger; insertion occurs when one finger hits two keys, 
so the inserted letter is usually either a neighbouring character on the keyboard or an incorrect doubling of the 
character; substitutions are usually of neighbouring characters; and most transpositions involve keys typed with 
different hands, where, for example, th is often mistyped ht.

Yannakoudakis and Fawthrop (1983a) analysed the error patterns in a corpus of spelling errors consisting of 60,000 
words of continuous text written by three adults who considered themselves to be very bad spellers. They found that 
the majority of English spelling errors are highly predictable and also that few errors are made in the first character 
of a word, but rather are made in the use of vowels and arise in the use of w, y and h. In relation to Damerau's four 
single-error types, they report that:

doubling and singling of any letter is common, the most common instances being an incorrect doubling of l and an 
incorrect singling of ss. Singling was over twice as common as doubling

transposition of any two adjacent characters is common

certain consonants are more frequently interchanged than others. For example, they tabulate the number of instances 
in which combinations of c, k and s are interchanged with each other.

They also report that the type of spelling errors made depended on the regional dialect of the subject. All vowel 
errors were found to have some phonetic basis, such as or being substituted for au. Rules corresponding to all these 
error types were incorporated into a spelling correction system (Yannakoudakis and Fawthrop 1983b).

Mitton reports that the most common method employed by spelling checkers and correctors is simply to look up the 
input word in a dictionary. If
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the word is not there, it must be an error. The dictionary may be enhanced by allowing the user to build a private 
supplement to it-some systems store stems and rules for affix stripping, as was previously described in Section 4.3. 
Other systems use hashing functions, methods whereby words are converted to numbers and more than one word 
may have the same number or hash code. The system is trained by passing through a sufficient body of typical text, 
and a record is kept of all the hash numbers encountered. In the future, words hashing to numbers not previously 
encountered will be rejected.

The task of spelling correction is more advanced than mere spelling error detection. Spelling correction systems 
must not only point out spelling errors, but must aim to suggest the word the user intended to type. According to 
Mitton, commercial companies tend not to publish details of how their spelling correctors work. In sorting a list of 
suggestions, use may be made of a knowledge of word frequencies or context in which the word occurs, as described 
in Section 4.9.2.

4.9.2 Use of context to disambiguate real-word errors

As we have seen, a traditional dictionary-based spelling error detection program determines that a word is 
misspelled if it does not appear in the program's dictionary. Some misspellings, described by Mitton (1996) as real-
word errors, give rise to another legitimate word in the dictionary, and thus are undetectable by this method. The 
number of possible undetectable errors is proportional to the number of words in the dictionary. For example, a 
small dictionary may not contain the word chat, and thus if the word chat were written in place of that the error 
would be noticed. However, a larger dictionary may well contain the word chat, causing this same error to pass 
unnoticed. One partial solution is to vary the words in the dictionary by subject area. An example of this is given by 
Atwell and Elliott (1987), who worked on a corpus of misspellings: current is much more likely than currant in the 
context of electronics. Another improvement to the basic dictionary method would be to store word frequency 
information with the dictionary, so the user could be informed if the selected word were uncommon and therefore 
possibly incorrect.

Mitton states that efforts to detect real-word errors generally depend on part-of-speech tagging the words in the 
context of their sentence and signalling a part-of-speech sequence with low probability, as exemplified by Atwell 
and Elliott's use of the CLAWS probabilistic tagger described in Chapter 2, Section 4.1.1. Mays, Damerau and 
Mercer (1991) use word co-occurrence trigrams rather than morphosyntactic tag bigram occurrence data to identify 
improbable word combinations. The main task of such context-based spelling correction is determining the degree of 
syntactic, semantic and pragmatic feasibility (represented by word trigram or tag bigram probabilities, gathered from 
statistical studies of a large corpus of text) of alternative sentences.
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The system of Mays, Damerau and Mercer might consider a phrase taken from transcripts of the Canadian 
parliament which should read I submit that what is happening in this case. If the first word were to be misspelt, we 
might have a submit that what is happening in this case, and if the second word were misspelt we might have I 
summit that what is happening in this case. In order to determine which of these three phrases is the likeliest, the 
natural logarithms of word trigram probabilities are considered. Since logarithms are additive, the logarithm of the 
probability of the entire phrase can be found by summing the logarithms of the probabilities of each of the trigrams 
found within the phrase with two null symbols at the start. When the correct version of the phrase is divided into the 
trigrams null null I + null I submit + I submit that + ... + in this case, the sum of the logarithms of the trigram 
probabilities is -39.1. For the first error sentence this value is-43.2, and for the second error sentence it is -52.1. This 
shows that the correct sentence is the likeliest of the three possibilities, since it has the least negative probability. We 
can see this pattern emerging when we compare the logarithm of probability (log p) of I submit that (-1.2) with the 
log p of Isummit that (-5.5) and the log p of a submit that (-3.7).

Atwell and Elliott use CLAWS unusual tag pairs. Since CLAWS makes no absolute distinction between ill-formed 
sentences and those which are correct but rare, a probability threshold must be employed below which input from a 
corpus is deemed incorrect. Whenever an incorrect word sequence is detected, it is possible that a real-word error 
has occurred, and Atwell and Elliott propose that 'cohorts' should be generated for each word in the sequence, where 
a cohort is a list of the input term and several other terms which might be the intended form of the input term.

The rule system of Yannakoudakis and Fawthrop (1983b) was designed to suggest corrections when input words are 
not found in the dictionary, but could also be used to generate cohorts for valid English words which are found in 
unlikely tag sequences, in the hope that one member of the cohort is more syntactically appropriate. For example, 
the incorrect input phrase I am very hit would generate the following cohorts, shown in Table 3.12.

I am very hit

an vary hot

a veery hut

hat

Table 3.12 
Cohorts generated for the phrase I am very hit

 

Each member of a cohort should be assigned a relative probability value, taking into account the following factors:

its degree of similarity to the word actually typed, where the typed word itself scores 1
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the trigram probability of the syntactic tags of each cohort member and the tags of the words immediately before and 
after

the frequency of use of the word in English in general (Here very would get a high probability value while veery 
would get a low probability value)

a high weighting should be given for preferred idioms like fish and chips, and a much lower weighting for a word 
sequence not in the dictionary of idioms such as fish and chops

weighting should be given for domain dependent lexical preferences.

All these factors should be multiplied together to give the final probability weightings.

Cohorts could be stored with each dictionary entry to save calculating them each time. Since it would require 
considerable research effort to produce a lexicon for each domain and a lexicon of collocational preferences, Atwell 
and Elliott suggest a simpler system in which each dictionary entry holds (a) the word itself, (b) the syntactic tags 
normally associated with that word and (c) error tags, which are the tags associated with any similar words where 
these are different from the word's own tags. An error would be reported whenever an error tag is found to be more 
probable in the given context than any of the word's own set of possible tags. An even simpler method would be to 
store a matrix of the error likelihoods of tag pairs, based on the analysis of a large corpus of real-life errors.

4.9.3 Automatic sentence alignment in parallel corpora

In a parallel corpus, 4 the same body of text appears in two or more languages. The task of sentence alignment is to 
postulate exactly which sentence or sentences of one language correspond with which sentence or sentences of the 
other language. An aligned parallel corpus provides an aid to human translators since it is possible to look up all 
sentences in which a word or phrase occurs in one language and find exactly how these sentences were translated 
into the other language. In other words, it enables multilingual concordancing. Sentence alignment also facilitates 
word alignment. Various statistical measures (described in Chapter 4, Sections 3.2.4 and 3.2.5) exist which 
determine instances where a word in one language consistently appears in sentences which align with sentences 
containing a word in the other language. The Gale and Church (1993) sentence alignment method is based on the 
facts that

longer sentences in one language tend to be translated into longer sequences in the other

certain types of alignment are more commonly encountered than others.

All possible sentence alignments are considered by the dynamic programming technique which eventually finds the 
most likely sequence of alignments. As each putative alignment is considered, a penalty is given according to the 
empirically
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determined a priori likelihood of the alignment, as shown in Table 3.13. The most common alignment type is where 
one sentence of one language matches just one sentence of the other language. This is called a 1:1 alignment. Other 
possible alignment types considered by Gale and Church are 1:0 or 0:1, where a sentence is present in one language 
but is not translated into the other, 2:1 or 1:2 where two sentences of one language correspond with just one of the 
other, and a 2:2 'merge' which consists of a pair of sentences in each language, where neither sentence of the first 
language corresponds exactly with either sentence in the second, but both sentences taken together from the first 
language correspond exactly with both sentences taken together from the second language.

Alignment Type 1:1 1:0 or O: 1 2:1 or 1:2 2:2

Probability 0.89 0.0099 0.089 0.011

Penaltya 0 450 230 440

Table 3.13 
Penalties for various alignment types according to Gale and Church (1993)

aPenalty = -100 * log [probability of the alignment type/probability of a 1:1 alignment]
 

A second penalty is added if the two sentences differ in their lengths in characters. An allowance is made for the fact 
that, for example, 100 characters of English on average correspond with about 120 in French or about 20 in Chinese. 
If we consider the bell-shaped curve which corresponds to the expected distribution of sentence lengths and draw 
vertical lines cutting the x-axis at the points corresponding to the observed sentence lengths, the penalty will be 
proportional to the area under the curve between the two lines. The most likely sequence of alignments is the one 
which incurs the least total penalty. In practice, the algorithm works well for 1:1 alignments, but the error rate is five 
times as great for 2:1 alignments, and 1:0 alignments are often totally missed (Simard, Foster and Isabelle 1992).

Simard, Foster and Isabelle found that a small amount of linguistic information was necessary in order to overcome 
the inherent weaknesses of the Gale and Church method. They proposed using cognates which are pairs of tokens of 
different languages which share obvious phonological or orthographical and semantic properties. Their criteria for 
cognates were

punctuation marks

if the words contain digits, they must be identical

if the words contain only alphabetic characters, the first four must be identical.

They thus have a binary classification where pairs of words are either cognates or not, but McEnery and Oakes 
(1996) use real-valued approximate
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string matching measures to estimate the extent to which words are cognate, namely truncation, Dice's similarity 
coefficient on the bigram structure of terms and dynamic programming. In comparing English and French 
vocabulary from a telecommunications corpus, it was found that cognates determined by bigram matching were 
accurate 97 per cent of the time if Dice's similarity coefficient was equal to or greater than 0.9, and 81 per cent if 
Dice's similarity coefficient was in the range 0.8 to 0.9. Accuracy of 97.5 per cent was found if truncation length 
was eight, falling to 68.5 per cent if truncation length was six. Dynamic programming was found to be slightly less 
accurate than Dice's similarity coefficient for bigrams.

4.9.4 Use of approximate string matching techniques to identify historical variants

Robertson and Willett (1992) discuss a range of techniques for matching words which occur in the Hartlib papers, a 
corpus of 17th-century English texts with their modern equivalents. They wanted a user to be able to retrieve from 
the 17th-century corpus using modern standard spellings. Although modern English spelling is largely standardised, 
in the 17th-century a given word might appear in any of several equally valid forms. A variety of spellings of the 
same word might occur within a single text. For example, letters would be added or deleted for line justification. 
Thus some modern words have more than one associated old form.

The experiments of Robertson and Willett involved the use of n-gram matching, SPEEDCOP coding and dynamic 
programming methods for spelling correction. In the n-gram experiments, both bigrams and trigrams were used. 
Their method of dividing a word into its n-grams differed slightly from the method described in Section 4.4, since 
one padding space was added to each end of every word before its division into bigrams, and two padding spaces 
were added to each end of the word before its division into trigrams. For example, the word string results in the 
generation of the bigrams *s, st, tr, ri, in, ng, g*, and the trigrams ** s, *st, str, tri, rin, ng, ng*, g**, where * 
denotes a padding space. The method assumes that historical variants of words having the greatest numbers of n-
grams in common with a given modern form are most likely to be associated with it. The method was deemed 
successful if a historical variant was one of the 20 historical words which best matched its modern form.

In the SPEEDCOP experiments, each of the words in the Hartlib test collection were sorted into two files, one 
consisting of each skeleton key and its original word, and the other of each omission key and its original word. Each 
of these files was sorted into alphabetical order of the respective key. The position of the key of each modern form 
considered by the experiment was found, and the coding method was deemed successful if the key of its historical 
variant was within 10 places of the key of the modern form. The dynamic programming experiments used the 
unweighted algorithm of Wagner and Fischer, described
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in Section 4.6. Once again, the 20 most similar historical words to the modern test word were retrieved, and the 
method was deemed successful whenever a historical variant of the modern word was among them.

Both of the n-gram methods were found to give high recall (that is, they retrieved a high percentage of the word 
variants in each case), achieving 95 per cent and 89 per cent for bigrams and trigrams respectively. The skeleton key 
outperformed the omission key, but produced only 76 per cent recall. Dynamic programming produced 96 per cent 
recall, but took about 30 times as long as bigram matching. Since Robertson and Willerr were concerned with the 
retrieval of the 20 most similar old forms in each case, precision (percentage of words retrieved which were true 
variants of the input word) was inevitably low.

5 Clustering of Terms According to Semantic Similarity

5.1 Zernik's method of tagging word sense in a corpus

Zernik's method (1991) identifies the set of senses for a polysemous word such as train (which, for example, can 
mean to educate or railway train).To summarise Zernik's method, the word under investigation is looked up in a 
corpus using a concordancer, and the lexical and semantic information contained within each concordance line is 
summarised by a set of weights called a signature. A hierarchical clustering algorithm is used to cluster the 
concordance lines according to their signatures, so that concordance lines containing a particular sense of the word 
of interest are brought together.

Each concordance line consists of five words before and five words after each occurrence of the word under 
investigation, and is represented as a list of weighted features such as terms or part of speech (the signature). A 
number of features are used as they are found in each line of the word concordance in the derivation of the 
signatures, including the appearance of

a full word

a word stem

collocations (information about collocations is stored in the lexicon)

part of speech.

Weight is a function of probability, so, for example, high-frequency terms have low weight, and a part of speech 
rarely taken by a word is given a high weight. The actual formula is s(X) = log(1/p(X)) where s(X) is the saliency or 
weight assigned to a feature and p(X) is the probability of a feature occurring.

For example, out of 1.3 million words in the entire corpus, the word rate occurred 115 times. Thus, the probability 
of the word rate appearing within a ten-word window was 115*10/1.3 million. Also, out of the 4116 concordance 
lines for the lemma train, the word appears 365 times with the suffix s. Thus, the probability of train occurring with 
the suffix s is 365/4116 = 0.089. Each signature is first normalised by the sum of its weights. For example, if a 
signature
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consists of three features with raw weights 1, 2 and 3, the sum is 6 and the normalised weights are 1/6, 2/6 and 3/6. 
Hierarchical clustering is used for word-sense classification. A distance function between signatures is defined as the 
dot product of the two signatures. The distances are used in a complete-linkage clustering algorithm to produce a 
clustered hierarchy of concordance lines. As a result of this clustering, a binary tree is produced with all the 
concordance lines as leaves. Zernik's system was found to be 95 per cent accurate for train, where the two senses of 
the word take different parts of speech, but was totally unable to disambiguate office which is a noun in both its 
senses.

5.2 Phillips's experiment on the lexical structure of science texts

Phillips (1989) describes how items can be used as technical terms with quite distinct meanings in different areas of 
science - for example, solution has different meanings in mathematics and chemistry. Thus, we can compare 
vocabulary and genre in scientific texts, and collocational patterning will vary with genre.

In Phillips's experiments, a specialised corpus was used, drawn from the Birmingham University corpus of modern 
English text. This subcorpus of half a million words consisted of textbooks which were on an official reading list for 
students of science or technology at tertiary level. A vocabulary listing was collected for each chapter of the texts in 
the corpus. All closed-class vocabulary items were eliminated from consideration, and all remaining items were 
lemmatised. The collocational behaviour of the resulting set of lemmata was quantified by producing a listing of the 
frequencies of collocation of each lemma with every other lemma. The CLOC package 5 provided details of 
collocational frequencies within a span of up to a maximum of 12 words on either side of the node (the word 
originally searched for).

With this method, each lemma was characterised by the set of values comprising its frequencies of collocation with 
its collocates. For example, in one particular text the lemma code might collocate with computer three times, encrypt 
five times, machine zero times, message four times and secret ten times. The collocational behaviour of code in that 
text could then be represented by the following vector of values: 3, 5, 0, 4, 10. Different vectors for different genres 
may be a means of distinguishing between homographs. If, in another text, we get a collocational vector for code of 
7, 0, 10, 0, 0, this would show that in the first case the field of discourse is cryptography while in the second it is the 
machine code used in computer science.

The collocational data for all the terms in the vocabulary forms a square matrix symmetric about the leading 
diagonal (which runs from top left to bottom right), where f12 is the frequency of collocation of terms 1 and 2. The 
principal diagonal represents the frequency of self-collocation, the number of times a lemma collocates with itself as 
in the examples I had had enough and strong acids and strong bases, where a word occurs more than once within 
the concordance window both as node and collocate.
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The similarity matrix data was normalised by transforming the raw collocation frequencies such that (a) the value of 
I was assigned to each cell on the leading diagonal and (b) all other frequencies of collocation were scaled to fall 
within the range 0-1. Thus, no node was considered more similar to another node than it is to itself. The formula by 

which normalisation was achieved was  where  is the number of times two terms collocate,  is 

the frequency of the first term and  is the frequency of the second term. For example, consider a collocation 
matrix of just three terms, such as the one shown in Table 3.14(a). Nodes 1 and 2 collocate with each other five 
times but none of the nodes collocates with itself. Node 1 collocates three times with node 3 while node 2 collocates 
four times with node 3. The values in Table 3.14(a) can be normalised to produce the values in Table 3.14(b).All the 
entries on the main diagonal, corresponding to self-collocation are set to 1. The non-normalised frequency of 
collocation for nodes 1 and 2 is five. Node 1 occurs a total of eight times, while node 2 occurs a total of nine times. 

The normalised collocational frequency, using the formula  is 5/(8 + 9 - 5) = 5/12 = 0.42. 
Similarly, the normalised collocation frequency for node 1 and node 3 is 3/(8 + 7 - 3) = 0.25, and that for nodes 2 
and 3 is 4/ (9 + 7- 3) = 0.31.

Node 1 Node 2 Node 3

Node 1 0 5 3

Node 2 5 0 4

Node 3 3 4 0

Table 3.14(a 
Non-normalised matrix of collocational frequencies

Node 1 Node 2 Node 3

Node 1 1 0.42 0.25

Node 2 0.42 1 0.31

Node 3 0.25 0.31 1

Table 3.14(b 
Normalised matrix of collocational frequencies

 

Due to storage considerations, the number of lemmata that were compared at once was limited by random sampling 
to produce a sample of about 60 items. The actual cluster analysis method employed in Phillips's study was Ward's 
method (Ward 1963). In order to evaluate this procedure, a pilot study was performed which successfully clustered 
terms known to be obvious collocates  for example, quantum with mechanics and magnetic with field. From the texts 
used for the main study, the following are extracts from the author's summary to the chapter entitled Rotating 
Frames (Phillips 1989, p. 53):
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a) In problems involving a rotating body  particularly the earth  it is often convenient to use a rotating frame of 
reference.

b) These are the centrifugal force, directed outwards from the axis of rotation, and the velocity-dependent Coriolis 
force.

c) Rotating flames are also useful in any problem involving a magnetic field.

These quotations give some indication of the nature of the content of this chapter. The terms centrifugal, velocity, 
field and axis were omitted from the analysis by the random selection procedure, and the main lexical sets retrieved 
were as follows:

1. force, Coriolis, order, neglect, term, third, acceleration, gravitational.

2. rotating, frame, reference.

3. angular, precess, constant, direction, swing, given, clearly.

4. magnetic, uniform.

5. earth, surface.

This patterning of orthographic words reveals the lexical organisation of the text and is detectable on the scale of the 
whole text. This gives rise to the notion of the lexical macrostructure of texts.

5.3 Morphological analysis of chemical and medical terms

The words in a corpus can be annotated with semantic information (see McEnery and Wilson 1996) as a precursor to 
the clustering of terms according to their semantic similarity. One way in which semantic codes can be automatically 
assigned to the terms in a corpus, in particular one made up of journal articles in pharmacology, has been described 
by Oakes and Taylor (1994). Morphological analysis was performed on the organic chemicals subtree of the 
Derwent Drug File (DDF) Thesaurus, in which the names and structures of the chemical compounds are well 
correlated. The term morphology refers to the study of the make-up of words, where the smallest syntactic unit or 
meaningful word fragment is the morph. The set of morphs representing a given grammatical element is known as a 
morpheme. The meanings of many medical and chemical terms do seem to be directly derivable as the sum of the 
meanings of their constituent morphemes. Morphemes can be represented by a code number or a canonical lexical 
form.

These codes can be derived through morphosyntactic analysis, an extension of stemming rules, where the primitive 
concepts within a term are found by recognition of its constituent lexical morphs. The terms in a thesaurus are 
arranged in a hierarchy, and thus terms are also able to inherit concepts (represented by codes) from superordinate or 
parent terms. Leech (1975) states that a more specific term is said to be the hyponym of its more general term, and it 
contains all the features present in the parent term.

With stemming rules, the word fragments which are deleted or replaced do
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not necessarily correspond with standard grammatical prefixes and suffixes, and no record is kept of these word 
fragments as they are identified and manipulated. An extension to stemming rules is to restrict affix removal to those 
word fragments which correspond to word morphemes. By replacing each morpheme by a semantic code or codes, 
each corresponding to a predefined domain-specific primitive concept, we may perform morphosyntactic analysis on 
terms.

Morphological analysis is initially performed on each term in the organic chemicals subtree of the DDF database. 
This yields a vector of primitive codes for each concept, which is then augmented by including further semantic 
features determined by inheritance, whereby all child concepts in the thesaurus acquire all semantic features 
possessed by their respective parent concepts. User input terms may also be transformed into attribute vectors based 
on identification of their constituent morphemes, and then compared by Dice's similarity coefficient with the 
system's known terms, leading to a ranked output of related thesaurus terms.

A morpheme dictionary was produced, where each recognised morph in the organic chemical subtree was 
represented alongside its canonical lexical form and its primitive code or codes. Examples of morphemes assigned to 
each subgroup of the chemicals section of the DDF thesaurus were as follows: amino acids and peptides were 
assigned the morphemes carboxyl and amino and arenes and other benzenoids were assigned aromatic and cyclic.

The set of chemical primitives employed by the chemical terms help-system included numerics such as the Latin and 
Greek numerals up to 44, and meth-, eth-, prop- and but-, which refer to the length of a carbon chain, and were 
assigned codes 1 to 4 respectively. Other primitive codes were assigned to the categories given in a chemistry text 
book, groupings of compounds found in the DDF thesaurus, and concepts found in a chemical dictionary.

If the user inputs the term aminocyclitol, the identified components of the input term will be

1. the component amino, meaning amino group and given the code 57

2. the component cycl, meaning cyclic and given the code 50

3. the component itol, meaning alcohol, and given the code 93.

The stored version of aminocyclitol also obtains the above codes by morphological analysis, and in addition inherits 
the codes 66 and 69 which are the primitive codes for the parent term monovalent, N-containing. Dice's similarity 
coefficient is used to match the primitive codes of the input term to the code vectors of stored terms. If the top three 
matching terms are displayed, the output will be aminocyclitol 0.75; peptide, cyclic 0.67; pyrrolidine 0. 67. In the 
case of pyrrolidine, the term inherits codes 50, 51, 5 and 69 as its parent term is carbamates, ureas, 5-members, N-
containing, and its constituent morphemes are pyrr- (code 69),-ol- (code 93) and -idine (code 57).The same code 
derived from two different sources is counted just once in the term code vector.
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Thus, morphological analysis was used in the development of a term retrieval system for the organic chemicals 
subtree. This help-system allows the user to input any chemical term, partial or complete, fully or partially 
recognised by the system, and the closest database known terms will be printed out in rank order of closeness to the 
input term. A related help system was also created, namely a translator of Greek and Latin medical terms. Primitive 
codes were not used in this case, but the everyday English canonical forms were printed out. For example, the input 
term cardiopathy would be translated by heart and disease.

5.4 Automatic thesaurus construction

One use of clustering terms according to their semantic similarity is in automatic thesaurus construction. Fully 
automatic thesaurus construction methods are based on the use of a set of document vectors, such as the one shown 
in Table 3.15, where each row corresponds to a particular document and column j of each document row shows 
whether term j has been assigned to each document. The similarity between pairs of columns is used to derive the 

similarity between term k and term h. If  indicates the weight or value (such as the number of occurrences in the 
document) of term k in document i and if there are n documents in the collection, a typical term-term similarity 
measure is given by

Term 1 Term 2 ... Term t

Document 1 d11 d12 ... d11

Document 2 d21 d22 ... d21

: : : :

Document 3 dn1 dn2 ... dnt

Table 3.15  
Matrix of document vectors

 

A normalisation factor can be used to limit the termterm similarities to values between 0 and 1. A new matrix, 
shown in Table 3.16, can be created of all the termterm similarities calculated in this manner, in which the value in 
row k and column h is the similarity between term k and term h. Salton and McGill (1983) recommend that in order 
to form thesaurus classes, one should start with this term-term similarity matrix and k perform single link clustering.

Term 1 Term 2 ... Term t

Term 1 S(Term 1, Term 1) S(Term 1, Term 2) ... S(Term 1, Term t)

Term 2 S(Term 2, Term 1) S(Term 2, Term 2) ... S(Term 2, Term t)

: : : :

Term t S(Term t, Term 1) S(Term t, Term 2) ... S(Term t, Term t)



Table 3.16 
Termterm similarity matrix
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6 Clustering of Documents According to Sublanguage Using the Perplexity Measure

A sublanguage is the semantically restricted subset of language used by a particular group of speakers, who might 
share a common interest such as birdwatching (Ashton 1996) or be employed in a common specialised occupation 
such as hospital surgeons (Bross, Shapiro and Anderson 1972). A sublanguage is characterised by such features as 
limited subject matter, 'deviant' rules of grammar, a high frequency of certain constructions and/or the use of special 
symbols (Lehrberger 1982).

Sekine (1994) used a newspaper (2147 articles of the San José Mercury) in his experiments on automatic 
sublanguage definition and identification. Each article in the newspaper was regarded as a unit of data, and a 
sublanguage would be formed by gathering similar units in terms of word appearance. This is similar to the text 
clustering technique in the field of information retrieval (Willett 1988). However, when creating clusters which are 
useful for information retrieval purposes, the linguistic features of those clusters are relatively unimportant. In 
contrast, Sekine's purpose was to find sublanguages useful for natural language processing systems, and so the 
linguistic features of the clusters were of importance.

In automatic sublanguage definition it is important to determine the number and size of clusters automatically, 
because otherwise one would need human intervention or the imposition of artificial thresholds. In order to achieve 
this, Sekine made use of the measure called perplexity, described in Chapter 2, Section 2.11. In order to calculate 
perplexity for a set of texts, the set must be treated as a single text. Sekine (1994, p. 125) states that

if two texts have a large number of overlapping tokens, the perplexity of the combined text will be smaller 
than that of a text which has tokens chosen at random from the entire corpus. In short, if the perplexity for 
a text set is small in comparison to the perplexity for a random text, we may say that the set has 
sublanguage tendency.

Clusters were grown from one initial article by adding similar articles in order of their similarity to the initial article, 
using a similarity measure based on the logarithm of inverse document frequency. The estimated perplexity value 
after each addition of an article was compared with the perplexity of a sample of the same size of random text. 
Sekine plotted a graph, reproduced in Figure 3.4, of perplexity ratio against the number of tokens in the text. This 
ratio tends towards one as the number of tokens becomes high, because the cluster is becoming similar to the set of 
all articles combined. The perplexity ratio reaches a minimum value when a small number of similar articles are 
combined. The articles combining to produce this minimum value were considered to constitute a sublanguage. New 
articles could be assigned to sublanguage clusters derived in this way by assigning them to the cluster containing the 
most similar article using the log inverse document frequency ratio.
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Figure 3.4 
Sekine's data: perplexity ratio as a function of number of tokens

7 Clustering of Dialects in Gaelic

As well as clustering terms and documents, clustering techniques may be employed in linguistics for the clustering 
of related dialects and languages. Kessler (1995) performed an experiment in which dialects of Gaelic were 
clustered. The original data for this study had been collected by Wagner (1958), who administered a questionnaire to 
native speakers of Gaelic in 86 locations in Ireland, the Isle of Man and seven locations in Scotland. The 
respondents had to provide the Gaelic word they would use for a variety of concepts, and these were transcribed into 
an alphabet based on the International Phonetic Alphabet. The first 51 concepts studied by Wagner were used in 
Kessler's experiment.

The first task in this cluster analysis was to compute the linguistic distance between each pair of locations. The 
measure selected was unweighted Levenshtein distance between the sets of phonetic transcriptions of concepts in 
each of the two locations. The unweighted Levenshtein distance is the cost of the least expensive set of insertions, 
deletions or substitutions that would be needed to transform one string into the other (Sankoff and Kruskal 1983).
The simplest technique employed by Kessler, in which all operations cost one unit, was called phone string 
comparison.

This method was extended to produce a metric called feature string comparison which assigns a greater distance to 
substitutions involving greater phonetic distinctions. To account for all the distinctions in Wagner's original word 
lists, twelve distinct phonetic features must be taken into account: articulator, glottis, height, laterality, length, 
nasality, palatisation, place, rounding, strength, stricture and syllabicity. A phone was scored on an arbitrary ordinal 
scale according to how it corresponded with each of these features. For example, the values for place were glottal = 
0, uvular = 0.1, postvelar = 0.2, velar = 0.3, prevelar = 0.4, palatal = 0.5, alveolar = 0.7, dental = 0.8 and labial = 1. 
The cost of substituting any two phones was taken to be the difference between the feature values, averaged across 
all 12 features. However, the distance matrix for the phone string comparison was found to be more closely 
correlated to Wagner's isogloss (contour map dividing regions in which
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different words for a concept are used) than the feature string comparison.

The feature string comparison distance matrix was used as the basis for bottom-up agglomerative clustering, which 
yields a binary tree of dialect locations. This type of clustering gave results which were well correlated with the 
isoglosses, and compared well with previously published accounts of dialectology in Gaelic.

Kessler states that one way of measuring how well a binary clustering technique works for dialect grouping is to 
compare for each site i its average dissimilarity from the other sites in the same dialect a(i) with its average 
dissimilarity from the sites in the other dialect, b(i). Kaufman and Rousseeuw's statistic s(i) is defined to be 1 - a(i)/b
(i) if a(i) is less than b(i), otherwise b(i)/a(i) - 1. The statistic thus ranges from 1 (site i fits perfectly in its assigned 
group) to -1 (site i would perfectly fit in the other group). This statistic allows one to visualise how well classified 
each site is, and also by finding the average value of this statistic across all sites, to derive an estimate of the quality 
of the clustering.

In conclusion, Kessler states that dialect groupings can be discovered objectively and automatically by cluster 
analysis. When agglomerative clustering based on the unweighted Levenshtein distance between phonetic strings is 
applied to Gaelic, plausible dialect boundaries are obtained, corresponding to national and provincial boundaries. 
This method is a great deal less tedious than deriving thousands of isoglosses. Similar studies have been performed 
by Schütz and Wenker (1966) on the dialects of Fiji and Évrard (1966) on the Bantu languages.

8 Summary

Principal components analysis and factor analysis are included in this chapter on clustering because they cluster the 
variables used to describe a data item. These techniques summarise the information in a complete set of variables 
using fewer variables called principal components or factors, and hence reduce the dimensionality of the data 
without significant loss of information. For example, Horvath started with the relative occurrences of 25 vowel 
sounds to represent the speech of Sydney speakers, and these variables were reduced to four principal components. 
Once the factors or principal components are known, data items such as speakers or texts can be clustered according 
to their scores on the variables which go to make up the factors or principal components. Mapping or ordination 
methods can be employed to represent the relationship between more than two variables on a two-dimensional map.

A range of clustering methods were described with particular reference to document clustering. The two main 
methods are non-hierarchic and hierarchic clustering. Hierarchical clustering produces a set of clusters where 
smaller clusters of very similar documents are included within larger clusters of less similar documents, while with 
non-hierarchical clustering the resulting clusters are not included one within the other. For both types of clustering a 
similarity
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metric is required, either for calculating interdocument similarity or for calculating the similarity between a single 
document and a cluster of documents represented by a class exemplar. The four main types of similarity metrics are 
association, correlation, distance and probabilistic coefficients. The most common clustering methods for documents 
are hierarchical agglomerative methods, where the smallest clusters are created first and then merged to produce the 
larger encompassing clusters. In each case the starting point is a matrix of interdocument similarities. The methods 
(average linkage, complete linkage, nearest neighbour and Ward's method) vary in the choice of similarity metric 
and in the method of updating the similarity matrix each time a new cluster is formed.

Terms may be clustered according to lexical or semantic similarity. Lexical clustering of terms is performed by a 
range of approximate string matching techniques, which include term truncation (the similarity of two terms being 
measured by the number of initial characters they have in common), suffix and prefix deletion and substitution 
(stemming) rules, clustering of terms according to their constituent n-grams (sequences of adjacent characters), 
dynamic programming (the least number of insertions, deletions and substitutions required to transform one word 
into another) and the SPEEDCOP and Soundex coding systems. The applications of approximate string matching are 
in spelling checkers, automatic sentence alignment in parallel corpora and concordancing, and the identification of 
historical variants of words in a corpus. With regard to the clustering of terms according to semantic similarity, they 
can be clustered according to the constituents of concordance lines in which they occur, or according to their 
collocates in science texts. The fact that similar terms will occur in similar documents can be the basis for automatic 
thesaurus construction. Other types of clustering are the clustering of texts in a corpus according to the sublanguages 
they are written in, and the clustering of dialects and languages on the basis of common or related vocabulary.

The clustering techniques we have described are amongst the most effective available and their position within 
corpus linguistics is quite central. Increasing numbers of studies are being produced which use clustering techniques 
such as principal component analysis even though they may not identify them as such. Consequently, the techniques 
we have covered here will be returned to from time to time as we review other work in corpus linguistics. The close 
study of clustering techniques presented in this chapter should provide a firm footing for understanding their use in 
corpus linguistics.

9 Exercises

1. The similarity matrix for four Malayo-Polynesian languages has been estimated as follows (using the method of 
Chapter 5, Exercise 4):
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Javanese Malay Madurese

Sundanese 0.35 0.75 0.58

Javanese 0.35 0.82

Malay 0.45
 

Use these values to construct a dendrogram using the average linkage method.

2. Using the approximate string matching techniques of (a) truncation, (b) Dice's coefficient for bigrams, and (c) 
dynamic programming where insertion, deletion and substitution all count as one operation, calculate the similarity 
between the words school and Schüle. To convert this dynamic programming value into a coefficient of similarity, 
divide by the number of characters in the longer word.

3. For the word pair linguistics and lists, calculate (a) the longest common substring and (b) the longest common 
subsequence. Use these values to calculate Coggins's D3 measure for this word pair.

4. Using the stemming rules of Paice (1977), reduce the following words to their lemmas: (a) solution, (b) soluble, 
(c) solve, (d) solvable. Which three form an equivalence class?

10 Further Reading

Numerical Taxonomy by Sneath and Sokal (1973) gives clear descriptions of many different clustering techniques, 
mainly applied to the field of biology. However, there is a brief but interesting section on the uses of clustering in 
Linguistics. Sankoff and Kruskal (see Kruskal 1983) describe string matching techniques in various fields of 
science, including the analysis of human speech. Willett (1988) has published a comprehensive review of 
hierarchical document clustering techniques.

Notes

1. See Morrison (1990) for a method involving matrix algebra.

2. Further details of the differences between PCA and FA in linguistics studies can be found m Alavi (1994).

3. See Paice (1977) for further details.

4. See McEnery and Wilson (1996) for a discussion of parallel corpora.

5. The CLOC package is described by Butler (1985b).
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4 
Concordanding collocations and dictionaries

1 Introduction

Concordancing as such is of secondary interest for this book, being merely a means of gathering data that can be 
exploited, but concordancing as the process of gathering the data in its own right is a more central concern of the 
books by Barnbrook (1996) and Ooi (1998). The reader interested in knowing more about retrieval from corpora 
should refer to these.

A concordance is a list, arranged in an order specified by the user, such as the order of appearance, of the 
occurrences of items in a source text, where each occurrence is surrounded by an appropriate portion of its original 
context. Before the statistics used on concordances are introduced, the concordance itself will be described in 
Section 2 and Sections 2.1 to 2.4 will describe the typical output of concordances, decisions regarding the context or 
span of a concordance window, the preparation and annotation of texts for concordancing, and modes of sorting the 
output. Concordance packages requiring only very simple statistics, such as word counts  for example, COCOA, 
OCP, EYEBALL and WordCruncher  will be described in Sections 2.4.1 to 2.4.2.

Closely related to the concept of a concordance is that of the collocation. Collocations are groups of words which 
frequently appear in the same context, displayed, for example, around a keyword by a concordancer. 1 The 
extraction of collocations from corpora enables the creation of dictionaries for many purposes  guides for learners of 
a second language (Milton 1997) or technical glossaries (Daille 1995), for example. Collocations can be extracted 
using purely syntactic criteria, as described in Section 3.1, by observing regular syntactic patterns which are known 
to be typical of idiomatic collocations or technical terms. It will be shown that some parts of speech are more likely 
to form collocations than others, and that collocations are often enclosed by frameworks of characteristic function 
words. In Sections 3.2 to 3.2.14, a range of statistical measures used to identify collocations will be described in 
considerable detail. The themes covered will be:
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the retrieval of col1ocational word pairs

the retrieval of technical terms from monolingual and bilingual corpora

corpus alignment for the extraction of bilingual collocations

extraction of collocations consisting of three or more words

determination of the sense of ambiguous words by the set of collocates of that word

extraction of collocations by a combination of syntactic and statistical information.

Further statistics useful in the production of dictionaries from corpora are measures such as Dunning's log likelihood 
measure (see Section 3.2.15) which shows if a word or phrase is overused or underused in a specialised corpus 
compared with a corpus of standard English, and dispersion measures, which show how evenly a word is distributed 
in the corpus (see Section 3.2.16). A multivariate technique which shows the different collocational behaviour of a 
word in different corpora is Hayashi's quantification, described in Section 3.2.17.

Having described the statistics for identifying collocations, some concordance packages which make use of these 
statistics will be described in Sections 4.1 to 4.4, in particular WordSmith and CobuildDirect.

2 The Concordance: Introduction

A concordance lists, in a suitable order, the occurrences of items in a source text, where each occurrence is 
surrounded by an appropriate portion of its original context. Concordances are the oldest and most common 
application of computers in the humanities (Oakman 1980). The earliest published concordance produced 
photographically from computer printout was a concordance to the poems of Matthew Arnold by Parrish (1959).

The first step in the generation of a concordance is to produce a word index from the source text. Hockey (1980) 
defines a word index as simply an alphabetical list of the words in a text usually with the number of times each 
individual word occurs and with some indication of where the word occurs in the text. Such a word index is known 
in the field of information retrieval as an inverted file (Salton and McGill 1983), an example of which is shown in 
part in Table 4.1. The entry for 'anaphoric' shows that the word occurs twice in the source text (the value before the 
colon), and these two occurrences are found in sections 52 and 53 of the source text, where a section may be a line 
or a paragraph.

algorithm 3: 125, 134, 144

anaphoric 2: 2, 52, 53

annotation 3: 24, 57, 119

artificial 3: 12, 16, 119

Table 4.1 
Part of an inverted file

 

When each occurrence of each word (called the keyword, headword or sort
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key) is presented with the words that surround it, the word index becomes a concordance. This concordance is often 
called a KWLC, Key Words in Context, concordance. Part of a KWIC concordance showing the keyword clowns 
centrally aligned is shown in Table 4.2. Sometimes the entire concordance for a book or corpus is published, but in other 
literary studies only the section of the concordance for one or selected number of keywords is printed out.

in sterling as in punts, and bands and <clowns> to provide extra entertainment. Racing

lement, brilliant trick biker, ridiculous <clowns> , sublime running gags, over-hyped, u

arrived in military trucks, dressed as <clowns> . Authorities have themselves acknowl

circus, the Circo Price, about whose <clowns> I wrote a poem in The Prodigal Son. I

er and such well-known and beloved <clowns> as Grock, Ramper and Charlie Rivel a

spkr> Jeeves: </spkr> Some of those <clowns> should get back to Billy Smart's ! </s

s lost but now I'm found Send in the <clowns> Sincerely yours A song like I'm singin

be bribed with the prospect of circus <clowns> and Charlie Chaplin films. They'd slip

laying himself for once in a crowd of <clowns> , and though he could only be real in a

seemed not the amusing and lovable <clowns> they were meant to be but somehow

Table 4. 
Part of a concordance produced from the British National Corpus

 

One way to view the word index is as a concordance with no printed context (Hays 1967). With it, the user must refer 
back to the source text to check the usage of a word in its original context. The advantage of the simple word index over 
the concordance is that it is not necessary for the machine to estimate the required amount of context beforehand, since 
this is effectively selected by the index user when the source text is consulted. On the other hand, there are many ways to 
elaborate on the concept of the concordance to make it more useful. For example, the sort key need not be a single word, 
and there are various ways in which features in the environment of a sort key can control the ordering of occurrences of 
the sort key in the concordance. In order to limit the output of a concordance, it may be best to place the most common 
words in an exclusion list or stoplist, so that no concordance output is produced for those words. However, as high-
frequency words are often of most interest to those studying linguistic usage, another class of words which are often 
stoplisted are the hapax legomena, the lexical units which occur just once each.

Concordances have a wide range of applications. Rudall and Corns (1987) list the following examples of possible 
functions of a concordance in literary stylistics:

1. As a memory aid. A partly-remembered quotation can be located in the original text by first looking up the 
remembered part in a concordance.

2. A concordance can be used as an index, since the original location of each concordance line (such a the scene or line) 
is normally given.
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3. The concordance facilitates approaches of linguistic stylistics to the study of both lexis and syntax. For example 
one can pick out and classify compound words, neologisms, archaic and slang words, or words drawn from the 
native vocabulary of English. Texts can be characterised as containing many such words. Concordances can assist 
the user in identifying homographs of a word, which is not easy by purely automatic methods. Sorting words by 
their endings rather than by their initial characters enables one to classify words by part of speech and to count the 
occurrence of each part of speech.

4. Concordances enable thematic analysis, or the identification of clusters of words which distinguish the linguistic 
universe of the text, such as words on the theme of light. Similarly, one can examine whether two different texts or 
two different parts of a single text differ, such as the parts spoken by two different characters in a play. The original 
text of a play can be annotated so that the concordance can distinguish different speakers.

Concordances are also valuable tools for observing collocations or textual items in the sort key environment which 
consistently appear in conjunction with a given sort key. Beyond these uses of a concordance, however, lies the 
possibility of statistical processing of concordance data. We will return to this point in Section 3.2.

Before we consider context in a concordance any further, however, we must briefly consider a relatively new type of 
computer concordance, a bilingual concordance. A bilingual concordance can be produced by aligning parallel text 
in two different languages so that a line from one text is followed immediately by the corresponding line from the 
other text. A pair of lines can then be specified as the context of any word (in either language) appearing within 
them. One application of a bilingual corpus is to examine which instances of a word in one language are translated 
in one way, and which in others, as performed by Gale, Church and Yarowsky (1992) and described in Section 
3.2.12.

2.1 Determining the context of a concordance

De Tollenaere (1973) discusses the problem of the context in computer-aided lexicography, where dictionary words 
are examined in context to show the different senses in which they may be used. To avoid having to refer back to the 
original text every time in order to determine the meaning of a word, the dictionary-maker must be able to view 
sufficient context in the concordance for the task at hand. A context printout which is too long may be abridged by 
the lexicographer in a few seconds, but a too short context will take a long time to complete. De Tollenaere suggests 
that a computer-generated context might, for example, consist of four lines before the headword and two after. This 
reflects the fact that the significant or 'defining' context usually precedes the
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keyword, and that the two lines following the keyword in most cases will allow the context to be syntactically 
complete. Shorter, mechanically determined contexts rarely correspond with syntactic units.

There are four basic strategies for determining the context of a concordance, or the number of lexical items 
surrounding each keyword. Firstly, one can stipulate a specified number of characters around each keyword, but this 
has the disadvantage of splitting those words which occur at the beginning or end of a concordance line. Secondly, 
each keyword can be given in the context of the line in which it occurs. This method is particularly good for 
presenting concordances of verse. Thirdly, the context may be the words around the keyword which are bracketed 
by punctuation. In this case the output may be unwieldy, and it may be necessary to set a maximum number of 
words for the context. A fourth, labour-intensive, possibility is the manual post-editing of a larger context produced 
by the machine. The option of pre-editing texts to determine contexts is also too labour-intensive for large texts 
(Rudall and Corns 1987). In practice, commercial concordance packages tend to use the first option.

The reality is that refinements for all of these strategies are possible. For example, consider the third option. De 
Tollenaere suggests the use of a hierarchy in punctuation, the order of precedence being full stop, exclamation mark 
or question mark, followed by semicolon then colon and finally comma. The concordance program should search 
between 180 to 120 characters before the headword for a punctuation mark of the highest precedence, to begin the 
context for the concordance output at that point. If none of these punctuation marks is found, the program should 
scan again for a semicolon, and so on. The same procedure could be used to close the context. Such proposed 
refinements are legion. In spite of this, the basic strategy most widely used is to simply specify 'n words on either 
side'.

2.2 Text selection and preparation for concordancing

Rudall and Corns (1987) discuss ways in which the corpus can be pre-prepared to prevent orthographically distinct 
instances of the same word, such as be and was, being listed separately. In a small concordance for private use it 
might be possible to normalise the spelling in the corpus, but for a publicly available concordance one must either 
use a widely current and respected version of the text or go back to the originals of the text. This will involve more 
work, but allows one, for example, to bring together variant readings of a text into a single corpus. The identification 
of variant spellings can be facilitated by generating a token list from the corpus, containing one entry for each word 
which occurs in the corpus irrespective of its frequency.

Another preprocessing task is to insert into the text file the references which are to be included in the concordance to 
identify the location of each keyword in the corpus  the date or the genre of the text, or speaker in a spoken corpus,
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for example. At the start of each play or other textual unit a marker must be inserted, distinguished from the raw text 
(perhaps by an SGML entity), so it is not processed itself when the concordance is produced.

Preprocessing of the corpus may also be necessary to cater for lemmatisation and homograph distinction. A simple 
concordancer for an unannotated corpus will separate the various inflected forms of the same word. Sometimes 
inflected forms will be sorted close together as in the case of dog and dogs, but sometimes the listings will be further 
apart as for man and men, go and went. Some examples of the same word spelt differently will also be sorted far 
apart, such as enquire and inquire. However, homographs will always be sorted together. Five strategies suggest 
themselves to overcome these problems:

1. Pre-editing of the corpus, such as by inserting markers to distinguish homographs as in lead1 and lead2. This may 
be difficult for some poetry, where double meanings of a word are sometimes used.

2. Enhancing the concordance program by instructing the machine to sort together groups of inflected or 
orthographically distinct words. Automatic lemmatisation may bring the various senses of a word together, except 
where prefixes and infixes are used in declensions.

3. Post-editing of the concordance. Items listed apart can be moved together if desired, or entries of homographs 
sorted together can be separated according to their contexts.

4. Cross-referencing and annotation. For each headword, a note should be given to the user if there are known to be 
alternative forms and closely-connected words which should also be looked up.

5. Approximate string matching to group spelling variants (Robertson and Willett 1992), described more fully in 
Chapter 5.

There are various modes in which corpora can be annotated for concordancing. Using dictionary look-up, a 
thesaurus code can be assigned to each word, enabling words with similar meaning to be sorted close together. 
Using morphological information, words can be divided into their roots and affixes. One can then study the 
frequency distribution of various affixes, or conversely sort all forms of the same baseword together. Syntactic 
information can be appended to the corpus by automatic parsing, or the annotation of dependency information, 
where the keyword can be sorted according to what it governs (its dependent) or what governs it. In other words, the 
context used in sorting can be fixed syntactically, rather than by spatial adjacency. For a comprehensive overview of 
corpus annotation see McEnery and Wilson (1996) or Garside, Leech and McEnery (1997).

It would also be desirable for a concordancer to decide if there are sections of the corpus which should be treated 
separately, such as quotations from another author, stage directions or foreign words, since these may distort 
vocabulary counts. Such sections can be marked by special characters in the
  
< previous page page_154 next page >
 

If you like this book, buy it!

http://www.amazon.com/o/asin/0748610324/ref=nosim/duf-20


< previous page page_155 next page >
Page 155

text such as square brackets, and one can create a separate concordance just for these words. SGML annotated 
corpora and retrieval software make this feasible.

2.3 Modes of sorting the output from a concordance

Hockey (1980) lists the orderings in which the occurrences of a word might be listed by a concordance. The most 
usual is the order in which they occur in the text. By using the alphabetical order of what comes to the right or left of 
the keyword, the instances of a particular phrase can be brought together. It is also possible to reverse the sort keys, 
so that they become sorted in alphabetical order of their endings. After sorting, the sort key can be turned around 
again before printing, producing what is called a 'reverse concordance', useful in the study of morphology, rhyme 
schemes and syntax. The computer can sort words in any alphabet order. For example, the Hua Xia concordancer of 
Oakes and Xu (1994) could sort Chinese characters by alphabetical order of their romanised (Pinyin) equivalents.

A more elaborate and effective mode of sorting according to the left and right components is described by Altenberg 
and Eeg-Olofsson (1990) as zig-zag sorting. Their aim was to identify recurrent word combinations in the 
LondonLund corpus of spoken English. Simply finding the frequency of all word pairs, word triples and so on would 
not be adequate, since recurrent word combinations vary in length and frequently overlap. Their chosen procedure 
was to sort their concordance in zig-zag order: first according to the keyword, then according to the first word to the 
right, then the first word to the left, the second to the right, and so on. This resulting layout was suitable for manual 
inspection, and a short sample is shown in Table 4.3. Using zig-zag order also makes it easy for computer programs 
to retrieve all recurrent combinations containing a certain keyword, where the instances of recurrent word 
combinations are indexed on their central words.

past five probably a bit after that

have been pruned a bit more

fact there's been quite a bit of painting this

reckon we spent quite a bit of time just wandering

in fact there's quite a bit of reflection

which takes up quite a bit of time

is really a bit excessive

Table 4.3 
Sample of zig-zag sorted concordance of recurrent word combinations in the London-Lund 
corpus (keyword = a).

 

To refine the retrieval process, Altenberg and Eeg-Oloffson eliminated all included instances: all word combinations 
included in larger ones (such as a bit being included in quite a bit of were automatically weeded out. The next step 
was the manual elimination of phraseologically irrelevant examples (those
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which were not linguistically interesting), such as of the, it a, or the whole he. The remaining word combinations 
were then analysed in terms of grammatical type using automatic tagging and parsing programs, and in terms of 
function, categorising combinations as characteristic of conversation types such as face-to-face or telephone 
conversation.

With a hyphen, various output schemes are possible. Treating it as a character will bring all instances of lady-like 
immediately after a block of instances of ladylike. If it were ignored completely, both forms of the word would be 
mixed in the same block. If it is regarded as a space-like delimiter or word separator, the two halves would be 
considered as separate and distort the word counts for lady and like (Hockey 1980). Producing a definitive response 
to this problem is not really possible as the acceptability of each option is somewhat user-specific.

Finally, let us consider sorting on word ending. Wisbey (1971) produced a concordance of rhymes in Old German 
poetry. Each word occurring at the end of a line was cross-referenced by listing its total number of occurrences, the 
location of each occurrence, and the word it rhymed with at that location. A line of such an index might read mir (2) 
228 dir 400 it, showing that mir occurs twice, once at the end of line 228 where it rhymes with dir and once at the 
end of line 400 where it rhymes with ir. Since Wisbey was compiling an index of rhymes, the entries were sorted in 
reverse alphabetical order.

2.4 Simple concordance packages

Now that the basics of concordancing have been discussed, in the following sections (2.4.1 to 2.4.4) four different 
concordance packages will be described: COCOA, OCPEYEBALL and WordCruncher. They are grouped together, 
since although they offer a range of facilities for collating and sorting the output, they are simple in the sense that 
they do not use any advanced statistical measures. Their statistical output is restricted to such measures as the 
frequency of each word in the corpus, frequency tables showing how many words appear once, twice and so on and 
a type-token ratio. Later in this chapter, after more sophisticated measures of lexical statistics have been introduced, 
four concordance packages which use them (Wordsmith, CobuildDirect, Lexa and Hua Xia) will be described.

2.4.1 Cocoa

COCOA (count and concordance on Atlas) was originally developed at the Atlas laboratory. It allows 
alphabetisation of the context on the word to the left or right of the keyword (Oakman 1980) and permits the 
creation of a user-specific alphabetical order. For example, in Spanish word lists the letter pairs ch and ll are 
normally sorted after c and I respectively. COCOA enables such a sorting order to be specified, so llano comes after 
luz rather than before it as would happen naturally with an English alphasort. COCOA can also produce reverse
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alphabetical lists, where a reverse index makes it possible to study patterns of rhymes or word endings in inflectional 
languages. In highly inflected languages, morphological endings come together in reverse indexes. For example, 
Wisbey's concordances to Middle High German texts (Wisbey 1971) enabled the historical study of both stems and 
endings in the development of the German language. COCAO permits the selective concordancing of words that fall 
within a certain frequency range or begin or end with particular prefixes and suffixes, such as restricting the output 
to only those words ending in -ing that occur at least 10 times in the corpus. Hyphenated words like a-dreaming can 
be automatically sorted to appear in two places in the text, under both a-dreaming and dreaming. COCOA also 
allows the user to specify searches for the co-occurrence of two specific words within a set number of words, 
retrieving, for example, all sentences where tropic and cancer occur within two words of each other.

In terms of vocabulary statistics, COCOA is able to generate frequency tables which show how many words occur 
once, twice, three times and so on. The type-token ratio, which is the ratio of different vocabulary items to the total 
number of words, is available. This is useful, as it is a measure which can be used to differentiate genres and writers 
(Rudall and Corns 1987). The reference format employed by COCOA is to enclose the reference in angle brackets, 
and consists of a one-letter category identifier, where, for example, <<T Catch 22> indicates the title of the novel, 
and < indicates the third stanza of a poem (Butler 1985b). COCOA was a forerunner of the Oxford Concordance 
Program, described in the following section.

2.4.2 The Oxford Concordance Program

With the Oxford Concordance Program (OCP), 2 the sorting of keywords can be alphabetical, by ascending or 
descending word frequency, or according to word length (Hofland 1991). A list of prefixes and suffixes can be 
specified, which will then be ignored in the sorting process. The concordance can be sorted by right-hand or left-
hand context. The required keywords can be stored beforehand in a list. This list may contain patterns where * 
stands for several or no characters and @ for exactly one character. For example, cut* stands for cut, cuts or cutting, 
and c@t stands for cat, cot, or cut. Concordances can cope with word combinations (including patterns) or pairs of 
words with up to a specified number of undefined words in between. The OCP allows the specification of such 
factors as requesting that the letter e with different accents should be sorted together. The output of the OCP can be 
specified as a word list, an index or a concordance, along with simple vocabulary statistics (word frequencies, 
number of words in each frequency band, and type-token ratio) if required.

2.4.3 Eyeball

In the EYEBALL concordance program each word is isolated and stored in an array which receives these additional 
pieces of information (Ross 1973):
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its location in the text

the word length in syllables

its syntactic category (such as noun, verb, determiner, or pronoun)

its syntactic function (such as subject, predicate, complement or adjunct)

a phrase-clause code which shows if the word ends a syntactic unit

the word itself

punctuation, if any, which follows the word.

Any of these pieces of information can be used as the sort key.

2.4.4 WordCruncher

WordCruncher 3 consists of an index creator called IndexETC and a browser called ViewETC (Hofland 1991).The 
user supplies a text corpus, which may be in English, French, German or Spanish, from which the indexer creates an 
inverted file consisting of each word in the corpus, the number of times it occurs and the location of each 
occurrence. Locations of words in the original corpus are described using a three-level system specified by the user, 
where, for example, a location might be specified by book (level 1), chapter (level 2) and sentence (level 3). The 
user can supply a stoplist of words which are not to be indexed. The sorting order of the various characters in the 
text may be specified, where, for example, upper- and lower-case characters may be specified as equivalent, or other 
characters such as hyphens are to be ignored in the sorting.

Once a text has been indexed, its lexical contents may be examined using the browser. After a text has been chosen, 
the main menu offers the options of looking up words or word combinations selected from a thesaurus or an 
alphabetical list of all distinct words occurring in the text. One can also view a frequency distribution showing how 
the usage of the chosen word varies according to the level 1 (broadest category) references, such as book or text 
genre. Alternatively, one can look up specific text references by specifying for example book, chapter and verse, or 
elect to make a KWIC concordance for selected parts of the text. It is possible to retrieve sequences of words, 
possibly with undefined words in between. One can specify that one word must occur before or after the other word, 
or either. Searches may be made in a tagged corpus, where, for example, one may retrieve all nouns (tagged using 
the syntax word_nn4) which occur within 30 characters of a form of the verb to have such as has-hvz or having-hvg. 
The ViewETC browser may be conveniently accessed from WordPerfect.

3 Collocations: Introduction

According to Kjellmer (1990), words in natural language tend to occur in clusters. Collocations are such word 
groups which frequently appear in the same context. Smadja (1991) writes that neither syntax nor semantics can 
justify the use of these word combinations, and refers to them as 'idiosyncratic
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collocations'. These account for a large part of English word combinations. 'Idiomatic collocations' are phrases 
which cannot be translated on a word-for-word basis. Smadja, McKeown and Hatzivassiloglou (1996) write that 
published translations of idiomatic collocations are not generally available, even though a knowledge of collocations 
is very important in the acquisition of a second language. One reason for this is that collocations tend to be specific 
to a domain sublanguage, and thus the collocations used in a sublanguage often have different translations to those 
in general usage. The concept of collocations is closely related to that of concordance output, since the idea of two 
words occurring in a common context is similar to that of two words occurring in the same concordance window.

Altenberg and Eeg-Olofsson (1990) state that collocational information is relevant to foreign language teaching, 
since many student errors are best explained collocationally, and a knowledge of collocational behaviour means that 
new lexical items can be first introduced to the student in their habitual environments. Dictionaries of collocations 
can be created from monolingual corpora, although in some studies (such as Gaussier and Langé 1994) this process 
is facilitated by the use of bilingual corpora. According to Haskel (1971), words are attracted to each other to form 
collocations if they are of the same derivation, they express opposite meanings, or they commence with the same 
consonant clusters. Collocations enable stylistic variety, since the creative author can bring together disparate words, 
forming unorthodox collocations.

Smadja (1992) lists the following applications of programs for identifying collocations:

Finding multiple word combinations in texts for indexing purposes in information retrieval, since these provide 
richer indexing units than single terms. Another way a knowledge of collocations can increase the precision of 
information retrieval systems is that a collocation gives the context in which a given word was used, which will help 
retrieve documents containing an ambiguous or domain-specific word which use that word in the desired sense.

For automatic language generation, knowledge of collocations must be pre-encoded in a lexicon. Lists of 
collocations are difficult to generate because they are domain-dependent and idiomatic and come in a large variety 
of forms.

Multilingual lexicography. A word-by-word translation of semer le dèsarroi (to cause havoc) would yield the 
incorrect sequence to sow disarray. This shows the need for bilingual collocational dictionaries, against which 
translations can be checked.

Knowledge of collocations will also improve text categorisation systems.

Gledhill (1996) explored the link between collocations and technical terms. He found that in a corpus of cancer 
research articles the term 'management'
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only occurs in phrases such as 'patients received active management'. Since this can only be interpreted alongside 
more typical expressions such as 'patients received drug X' (where X is a treatment-related drug) it can be assumed 
that 'management' is a technical term for a course of drugs. Gledhill makes a distinction between technical terms and 
collocations which are phrases in everyday use, but authors such as Daille (1994) use techniques for finding 
collocations specifically to extract technical terms.

Collocations also have a role to play in translation. Nagao (1984) suggests that a human translator will first 
decompose a source sentence into phrases or fragments, then translate each fragment by analogy with other 
examples, then finally combine the target language fragments into a single sentence. It is possible that collocations 
correspond with these fragments which act as translation units. So what are we observing when we see a 
collocation? Wolff (1991) suggests that in order to maximise the efficiency of storage of lexical items in the brain, 
certain words are stored as patterns of more than one word, these word patterns appearing in language in a variety of 
contexts. Collocations might therefore correspond with such word patterns (Kita et al. 1994).

With this in mind, let us consider a definition of collocations. Kjellmer (1984) uses the following definition of 
collocations: collocations are both lexically determined and grammatically restricted sequences of words. Lexically 
determined means that in order to be considered as a collocation, a word sequence should recur a certain number of 
times in the corpus. Grammatically restricted means that the sequence should also be grammatically well formed 
according to Kjellmer's criteria. Thus, of the three sequences try to, hall to and green ideas, only try to is counted as 
a collocation, since green ideas occurs only once in Kjellmer's corpus and hall to is not a grammatically well-formed 
sequence. The distinctiveness of collocations is a matter of degree rather than an all-or-nothing feature. Kjellmer 
suggests that the following factors could be used to indicate the degree of collocational distinctiveness:

Absolute frequency of occurrence, where the more frequent the collocation, the more distinctive. This criterion has 
been employed by many authors.

Relative frequency of occurrence, being the ratio of the observed frequency of a collocation to the frequency 
expected if the words occurred together only by chance. This ratio is expressed by the mutual information formula 
(used, for example, by Church and Hanks 1990).

Length of sequence, where, for example, the collocation figured prominently in seems more distinctive than simply 
figured in. Sequence length is incorporated into the 'cost criterion' formula of Kita et al. (1994).

Distribution of the sequence over texts or text categories. This criterion may be evaluated using the measures of 
diversity, used by Daille (1994, 1995) and dispersion, used by Lyne (1985, 1986).
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In the following section we will examine Kjellmer's assertion that a collocation is a grammatically restricted 
sequence, and in Section 3.2, measures of collocational distinctiveness will be described, including those which 
examine Kjellmer's criteria.

3.1 Syntactic criteria for collocability

In connection with collocation studies, Kjellmer (1990) asked whether different words or word types differ in their 
tendency to cluster. In the Gothenburg corpus of collocations, drawn from the Brown corpus (which will be referred 
to as the non-collocational corpus), collocations are defined as 'recurring grammatically well-formed sequences'. 
Using a grammatically-tagged version of both the corpus of collocations and a non-collocational corpus, he was able 
to establish which word classes are 'collocational' and which are not. In Table 4.4 the percentage of words with a 
given part-of-speech tag used in collocations and in non-collocations are given. These results show that the parts

of speech AT, IN, NN and VB are collocational, while JJ, NP and RB are non-collocational.

Tag Collocational Non-collocational

corpus corpus

AT article 17 0

IN preposition 16 1

JJ adjective 5 28

NN singular or mass noun 21 6

NP singular proper noun 4 21

RB adverb 1 21

VB verb, base form 3 0

Table 4.4 
Tag percentages in collocational/non-collocational corpora

 

The ratio ((occurrences in collocations × 100): (occurrences in the Brown corpus)) will give an indication of the 
collocability of each word as a percentage. This 'collocational ratio' was computed for all the words in the Brown 
corpus with a frequency of four or more. Of words which could be unambiguously tagged, the 500 'most 
collocational' and the 500 'least collocational' were found and sorted according to tag, giving results similar to those 
shown in Table 4.4.

Common grammatical words combine with each other in various ways. Renouf and Sinclair (1991) discuss 
collocational structures or 'frameworks', consisting of discontinuous pairings of common grammatical words which 
'enclose' characteristic words or groupings of words. They studied frameworks of pairs of high-frequency 
grammatical words with one intervening word or 'collocate'. Examples of frequent collocational types found for the 
framework a + ? + of in the written corpus were a lot of, a kind of and a number of. The
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variable collocates were mostly nouns. The frameworks studied, the total number of occurrences of each framework 
(tokens), the number of different intervening words found (types) and the type-token ratio for written and spoken 
data obtained from the Birmingham Collection of English Text are given in Table 4.5. The type-token ratio indicates 
how selective each framework is in its choice of possible collocates, lower values indicating greater selectivity.

Framework Spoken corpus Written corpus

Tokens Types Ratio Tokens Types Ratio

a + ? + of 3830 585 6.0:1 25,416 2848 8.9:1

an + ? + of 208 94 2.2:1 2362 479 4.9:1

be + ? + to 790 216 3.6:1 5457 871 6.3:1

too + ? + to 59 36 1.6:1 1122 387 3.0:1

for + ? + of 127 56 2.3:1 1230 332 3.7:1

many + ? + of 63 36 1.8:1 402 159 2.5:1

Table 4.5 
Frequency of occurrence of collocational frameworks

 

3.2 Measures of collocation strength

Given that we can spot collocational candidates, how might we rate their relative importance? The answer is to 
measure collocational strength. In the following sections we will examine a variety of measures of the strength of 
the collocation between two or more words, since these measures can identify such phrases as idiomatic collocations 
and technical terms in a corpus, which can then be collated into dictionaries. For the identification of significant two-
word units in monolingual corpora we will examine Berry-Rogghe's (1973) z score and R score (Section 3.2.1), and 
the IT>C score of Geffroy et al. (1973) which depends on both the frequency of a word pair and the proximity with 
which they occur in the text (Section 3.2.2). In Section 3.2.3 we will examine the use of combination theory in 
determining the significance of a collocation. In Sections 3.2.5 to 3.2.6, the work of Daille (1994) and Gaussier and 
Langé (1994) at c2v and IBM in Paris will be described, in which technical terms are extracted firstly from a 
monolingual corpus alone and then by making use of syntactic pattern affinities in a bilingual corpus. When 
bilingual corpora are used for term extraction, they must generally be aligned beforehand. After a description of an 
automatic alignment algorithm in Section 3.2.7 will follow a description of the use of bilingual corpora on term 
extraction on the CRATER, project (McEnery and Oakes 1996).The use of collocation strength measures for the 
identification of phrases consisting of three or more words will be covered, for which the Cost Criterion, Factor 
Analysis and Luk's (1994) use of mutual information for the segmentation of Chinese words will be described 
(Sections 3.2.9 to 3.2.11). The XTRACT program, described in Section 3.2.12,
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uses a mixture of syntactic knowledge and statistics to extract collocations of two words from a monolingual corpus. 
Smadja, McKeown and Hatzivassilog1ou's Champollion program (1996) then uses a bilingual version of the same 
corpus to assemble these word pairs into longer collocational phrases. The measure of collocational strength used for 
this purpose is Dice's similarity coefficient. In Section 3.2.15, statistics for determining whether a word appears 
more frequently in a genre-specific corpus than in a general corpus will be described. Finally, in Section 3.2.16, we 
will encounter dispersion measures, which show how evenly a word is distributed throughout the corpus, since 
Kjellmer (1984) states that idiomatic collocations tend to be spread throughout the text. With this done, we can 
move to an examination of the use of some of these measures in available concordance packages.

3.2.1 Berry-Rogghe's z-score calculation

Berry-Rogghe (1973) aimed to compile for each word in the corpus a list of its significant collocates. The phrase 
significant collocation can be defined in statistical terms as the probability of one lexical item (the node) co-
occurring with another word or phrase within a specified linear distance or span being greater than might be 
expected from pure chance. In order to quantify this, the following data must be defined:

Z: the total number of words in the text.

A: a given node occurring in the text Fn times.

B: a collocate of A occurring in the text Fc times.

K: number of co-occurrences of B and A

S: span size; that is, the number of items on either side of the node considered as its environment.

The probability of B co-occurring K times with A, if B were randomly distributed in the text, must first be computed. 
Next, the difference between the expected number of co-occurrences and the observed number of co-occurrences 
must be evaluated. The probability of B occurring at any place where A does not occur is expressed by:

The expected number of co-occurrences is given by:

The problem is to decide whether the difference between the observed and expected frequencies is statistically 
significant. This can be done by means of computation of the z score using the formula

where q= 1-p. This formula yielded a gradation among collocates with high
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scores assigned for collocations intuitively felt to be strong. The problem with this formula is that it does not allow a 
word to collocate with itself. Berry-Rogghe used the z-score formula to study collocations of house in a corpus made 
up of A Christmas Carol by Charles Dickens, Each in his own Wilderness by Doris Lessing, and Everything in the 
Garden by Giles Cooper. In some cases negative z scores were computed, showing that in some sense two words 
can repel each other. The sum of all the z scores for a given word should be zero. For a collocation to be statistically 
significant at the 1 per cent level, the z score should be at least 2.576. Berry-Rogghe repeated the experiment for 
different spans in the range 3 to 6 to find the optimal span. Increasing the span size resulted in introducing desirable 
collocates from A Christmas Carol but undesirable ones from the two plays.

When the span was set to three, the significant collocates for house were as follows, with the highest scoring given 
first: sold, commons, decorate, this, empty, buying, painting, opposite, loves, outside, lived, family, remember, full, 
my, into, the, has. In each case the z score was significant. When the span was set to six, the significant collocates 
were: sold, commons, decorate, fronts, cracks, this, empty, buying, painting, opposite, loves, entered, black, near, 
outside, remember, lived, rooms, God, stop, garden, flat, every, big, my, into, family, Bernard, whole. Thus, 
increasing the span removes the undesired collocates the and has which have no particular relation with house, and 
picks up several desirable collocates of house such as rooms, God, garden or flat. The only undesirable collocate to 
be picked up by increasing the span was Bernard. The majority of collocates occur within sentence boundaries, so a 
text with longer sentences (the average sentence length for A Christmas Carol was 14 words while for the plays it 
was only 6.7) has the greater optimal span. However, important collocates can be missed due to anaphoric reference. 
Overall, Berry-Rogghe found that the optimal span was four, using a variety of words, except for adjectives where 
the optimal span was just two. The optimal span could effectively be increased from four to six or seven items, by 
employing an exclusion list of words such as and, but, it, its, nor, or, that, what, whether, which, who, and all forms 
of the auxiliaries be, do and have. These words would be ignored in the calculation of all frequencies in the z-score 
formula and in determining the length of the span.

In 1974 Berry-Rogghe again used the z-score formula, this time for the automatic identification of phrasal verbs. 
Phrasal verbs were defined as idiomatic occurrences of a verb followed by a particle, as in look after or give in. 
Major syntactic criteria for the identification of phrasal verbs are as follows:

Typically phrasal verbs are replaceable by a single item which is synonymous to it, as in come up = mount, come in 
= enter, or come ou = leave, as opposed to non-idiomatic occurrences of verb + particle such as look at or give to.

A phrasal verb can normally undergo passive transformation. For example, the idiomatic They arrived at a derision 
can be replaced by A
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decision was arrived at, but the non-idiomatic They arrived at the station cannot be replaced by*The station was 
arrived at.

The phrasal verb cannot normally be inverted: for example the idiomatic It stood out cannot be replaced by*Out it 
stood, but the non-idiomatic He came out can be replaced by Out he came.

All three criteria have exceptions, since idiomaticity is not absolute but rather a matter of degree.

Rather than obtaining collocational sets of every verb in the text, it was more practical to start by examining the 
particles which are limited, and to examine their left-order collocates. The head word in was chosen as it was the 
most frequent particle with 2304 recorded occurrences. Using COCOA, Berry-Rogghe produced a concordance of 
the keyword in sorted to the left, so, for example, believe in comes before give in. The underlying corpus was of 
202,000 words, consisting of works by Doris Lessing, D. H. Lawrence and Henry Fielding. All left-hand side 
collocates of in whose z score was greater than three were found, which, in order of greatest z score first, were as 
follows: interested, versed, lived, believe, found, live, ride, living, dropped, appeared, travelled, die, sat, died, 
interest, life, rode, stood, walk, find, house, arrived, came. This list, which we will refer to as list 1, shows what we 
might intuitively expect, namely that words such as interested and believe are more closely associated with in than 
such words as walk or sit. However, this list of collocates ordered by decreasing z scores alone is not quite sufficient 
to quantify the degree of idiomaticity. For example lived in should be less idiomatic than believe in, though the list 
suggests otherwise.

An expression is said to be idiomatic when the meaning of the whole differs from that of the separate parts. This 
could be observed if the whole expression attracts a sufficiently different set of collocates to the collocates of each 
of the parts of the expression. Berry-Rogghe gives the example that hot dog collocates with eat, mustard and stalls; 
hot alone with weather, air or water, and dog alone with bark or tail. Another group of idioms with exactly the same 
collocations as one of the parts is found. An example of this would be the phrase versed in, where versed never 
occurs without in. This led Berry-Rogghe (1974, pp. 21-2) to propose the following definition of a phrasal verb:

Those combinations of verb + particle are to be considered as constituting a single lexical item when they 
contract different collocational relations from those of the particle as a separate entity.

To identify idiomatic phrasal verbs in which the particle was in, Berry-Rogghe first found the right-hand collocates 
of in. Only those cases where in was immediately preceded by a punctuation mark were counted, lest any preceding 
verb impose its own collocational pattern. The significant right-hand collocates of in, listed in order of decreasing z 
score, were as follows: spring, spite, short, reality, afternoon, fact, daytime, vain, Russia, summer, manner, case, 
order, morning, sense, world, London, country, voice, opinion, pocket, way, garden, town, minutes,
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road, night, book, America, days. This list will be referred to as list 2.

Next, Berry-Rogghe found the collocational sets of all items significantly followed by in, which were given in list 1. 
The span size was two items to the right without overstepping any sentence boundary. Thus, the collocational sets 
were found for the phrases interested in, came in and so on. For each collocational set, the number of collocates 
which also appeared in list 2 was determined. We will call these a. These were collocates of both the phrase 
containing in and the lone word in. The total number of members in the collocational set of the phrase will be called 
b. An R score was devised, which was given by the formula R= a/b. The phrase versed in had three significant 
collocates, namely politics, history and Greek. None of these were significant collocates of in alone. Thus, for the 
phrase versed in, R = 0/3 = 0. Similarly, for the phrase believe in, none of the five collocates witchcraft, God, Jesus, 
Devil or Paradise were significant collocates of in alone, giving an R score of 0/5 = 0. On the other hand, the 11 
significant collocates of live in were as follows: hut, house,*town,*country,*London,*room,*world,*place, family, 
happiness and ignorance. Those six words marked with asterisks also appeared in list 2, being collocates of in alone. 
In this case R = 6/ 11 = 0.54. The lower the R value, the more idiomatic the phrase, since the set of collocates of the 
phrase are distinct from the collocates of the particle alone. Thus versed in and believe in are highly idiomatic, while 
live in has relatively low idiomaticity.

A version of Berry-Rogghe's z-score formula was used to sort collocates in the TACT (Text Analytic Computer 
Tools) system for text navigation and analysis, so that associationally richer term pairs appear near the top of the list. 
This formula compares the number of times a collocate occurs in the span surrounding the node with the number of 
times it would have occurred if the occurrences of the collocate were randomly distributed throughout the corpus 
(Lancashire 1995).

3.2.2 Collocational strength in French political tracts

Geffroy et al. (1973), in their study of lexical co-occurrences in French political tracts distributed in Paris in May 
1968, produced a formula for the strength of collocations (called C) which took into account both the frequency of 
co-occurrences and the proximity of the collocates to each other. It is important when studying French co-
occurrences to take into account the order of node or pole (one member of a collocational pair) and collocate. In 
their formula, cfo is the frequency observed between the collocate F and its pole P within a given span, and d is the 
number of items interspersed between the pole and each collocated item. f(P) is the frequency of the pole. The full 
formula is as follows:

For example, travailleurs and étudiants occur together in the following two
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sentences: Avec les flics les travailleurs(l) et les étudiants(0) savent s'y prendre, and On vit de jeunes travailleurs(4) 
commencer(3) à venir(2) se battre(l) avec les étudiants(0). Thus, travailleurs appears in the left-side spans of 
étudiants with the coefficient

Words in a corpus have a relative frequency (denoted fr) which is the ratio between their number of occurrences and 
the total number of words in the corpus; for a span of n items to the left and right of the pole word P, the quantity 

 is the theoretical co-frequency (cft) of F with P. This value was compared with the actual co-occurrence 
frequency (cfo) observed for F in the vicinity of P, to yield d = cfo - cft. Geffroy et al. apply the z score to this 
difference to determine whether their observed collocations were significant. All significant collocations can be 
displayed on a flat lexicograph, which lists every keyword accompanied by all significant collocates to the left and 
right. These collocates are called first-order collocates, and there is a direct relation between the keyword and 
collocate. For second-order collocates, the collocate and keyword are only indirectly related, by the fact that there is 
a first-order collocation between the keyword and another word, and a first-order collocation between that other 
word and the collocate. An example of a flat lexicograph is shown in Table 4.6, which shows that pouvoir always 
comes before the keyword travailleurs, grève always comes after it, and lutte co-occurs both before and after the 
keyword.

pouvoir travailleurs étudiants

revendications grèev

lutte lutte

jeunes immigrés

millions français

Table 4.6 
Flat lexicograph for the word travailleurs

 

The calculations carried out for a pole can in turn be made for each of the selected co-occurrents giving rise to a 
network depicting second- and higher-order collocations. So that only the major collocations would be depicted, 
Geffroy et al. employed cut-off points for minimum values of C and f such as 5 and 20. They thus produced a 
multistorey lexicograph, which was not simply a tree since it incorporated cycles and loops. One circuit in the 
diagram connected the three words parti, communiste and français. Different lexicographs were obtained from 
different sets of tracts or subcorpora, allegedly reflecting the different philosophies of communists and anarchist-
Maoists.

3.2.3 The use of combinatorics to determine collocational significance

Lafon (1984) gives a method of finding the significance of a collocation, using the mathematics of combinations. 
Consider the following sequence of pseudo-
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words in a text: S S F G S F F G S S F G F S S S F S G F S S. We wish to know whether F and G occur together 
more commonly than would be expected by chance. Lafon uses the term 'couple' to refer to a sequence of two words 
where the order is fixed, for example, F followed by G, and the term 'pair' to refer to two words which appear 
together in either order. In the above example, there are three occurrences of the couple (F®G), two occurrences of 
the couple (G®F), and thus five occurrences of the pair (F, G).To find the probability of obtaining these values, we 
use the following formula:

k is the number of times the pair (F, G) occurs (5), while f, g, and s are the number of times the words F, G and S 
each occur in the sequence (7, 4 and 11 respectively). The notation

means the number of ways (or combinations) r words can be selected from a sequence of n words without regard to 
order. Thus, if our word sequence is X, Y, Z, we can select two different words from it in three different ways: XY, 
YZ or XZ. Since word order is not important here, XY and YX count as one combination. The number of distinct 
combinations selecting r words out of n is

The notation n! means that the value n is multiplied by n-l, then by n-2, and so on until we reach 1. In this example n 
= 3, so . By convention, 0! always equals 1. In the example where s = 11,f = 7 and g = 4, 
probability values for all possible values of k are given in Table 4.7.

k Prob((F,G)=k) Prob((F,G)>=k)

(F,G)=0 0.187 1

(F,G)=1 0.435 0.813

(F,G)=2 0.301 0.378

(F,G)=3 0.072 0.077

(F,G)=4 0.005 0.005

Table 4.7 
Probability values for different numbers of pairs occurring in a sequence

 

From Table 4.7 we see that the probability of the pair (F,G) occurring four or more times in a random sequence 
consisting of seven Fs, four Gs and 11 Ss is 0.005, so we can be 99.5 per cent confident that the collocation between 
F and G is a true one.
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3.2.4 Daille's approach to monolingual terminology extraction

Daille (1995) presents a method for extracting technical terms from a corpus by combining linguistic data and 
statistical scores. Initially candidate terms are selected, which conform to one of a number of syntactic patterns 
encoded in finite state automata. Statistical scores are then used to estimate which of these candidate terms are most 
likely to be true technical terms.

Technical terms may be regarded as multi-word units (MWUS), since they are often composed of several words 
such as receiving antenna. The length of an MWU is defined as the number of main items (such as nouns or 
adjectives) it contains. Terms of length 1 are single or hyphenated terms, and those of length 2 are referred to as 
'base MWUS', since they are by far the most common. In addition, most longer MWUS are built from MWUS of 
length 2 by the processes of composition (e.g., [side lobe] regrowth), modification (e.g., interfering [earth station]) 
or co-ordination (e.g., packet assembly/disassembly). Both Daille (1995) and Gaussier and Langé (1994) concentrate 
on base MWUS of length 2. Most of these are noun phrases, obeying precise rules of syntactic combination. 
Examples of such syntactic patterns in French are:

Noun Adjective, e.g., station terrienne (earth station)

Noun1 Preposition (Determiner) Noun2, e.g., zone de couverture (coverage zone), réflecteur à grille (grid reflector) 
or liaison par satellite (satellite link)

Noun1 Noun2, e.g., diode tunnel (tunnel diode).

Examples in English are:

Adjective Noun, e.g., multiple access (accès multiple)

Noun2 Noun1, e.g., data transmission (transmission de donnèes).

To detect candidate terms of length 2, sequences of words which produce regular syntactic patterns known to be 
typical of technical terms are found using finite state automata. A finite state automaton is an abstract mathematical 
formalism that receives a string of symbols as input, reads the string one symbol at a time and after reading the last 
symbol halts and signifies either acceptance or rejection of the input. At any stage of the computation, the finite state 
automaton is in one of a finite number of states. As each symbol is read in, there are rules for deciding which state 
the system will change to, or whether it will remain in the same state. The automaton always starts in the state 
known as the initial state, and if it ends up in one of the states known as a final state after reading the last symbol of 
the input string, the input is accepted, otherwise it is rejected. A simple automaton to test for the sequence Noun 
Preposition (Determiner) Noun is shown in Figure 4.1. Two possible paths may be taken through this automaton: 
one corresponding to the sequence Noun Preposition Determiner Noun and the other corresponding to the sequence 
Noun Preposition Noun. All other sequences with be rejected by this automaton.
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Figure 4.1 
A simple finite state automaton

The syntactic patterns accepted by Daille's automata are

Noun Adjective

Nounl 'de' (Determiner) Noun2

Nounl 'à' (Determiner) Noun2

Nounl Other-Preposition Noun2

Nounl Noun2.

In this way Daille was able to filter out, in terms of their syntactic structures, word co-occurrences that were possible 
technical terms. Statistical scores were then used in order to determine which of these co-occurrences were true 
technical terms. A variety of scores were evaluated to see which most successfully assigned high scores to true 
technical terms and low scores to co-occurrences which were not technical terms. The various statistical scores 
depend on the computation of three types of numeric characteristics: frequencies, association criteria and Shannon 
diversity, which are all described in this section. To these numeric characteristics was added a measure which uses 
bilingual data, namely Gaussier and Langé's affinity, which will be described in Section 3.2.6.

Each lemma pair consists of lemmas denoted Li and Lj. The frequencies needed as parameters of the association 
criteria are the elements of the contingency table, described in Chapter 1, Section 4.1, where:

a stands for the frequency of lemma pairs involving both Li and Lj

b stands for the frequency of pairs involving Li but not Lj

c stands for the frequency of pairs involving Lj but not Lj

d stands for the frequency of pairs involving neither Li nor Lj.

The sum a+b+c+d, denoted N, is the total number of occurrences of all pairs obtained for a given syntactic pattern.

The association criteria and affinity compute the strength of the bond between the two lemmas of a pair, enabling 
candidate terms to be sorted from the most tightly to the least tightly bound. Some of these association criteria have 
been used in lexical statistics, such as the simple matching coefficient, the phi coefficient, the log-likelihood 
coefficient, and mutual information. Some have been used in other technical domains, such as biology: the 
Kulczinsky coefficient, the Ochiai coefficient, the Fager and McGowan coefficient, the
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Yule coefficient and the McConnoughy coefficient. Daille (1995) introduces two new formulae based on mutual 
information, the squared and cubic association ratios. The association criteria used by Daille are as follows:

Simple matching coefficient (SMC), which varies from 0 to 1:

Kulczinsky coefficient (KUC), which varies from 0 to 1:

Ochiai coefficient (OCH), which varies from 0 to 1:

Fager and McGowan coefficient (FAG), which varies from minus infinity to 1:

Yule coefficient (YUL), which varies from -1 to + l:

McConnoughy coefficient (MCC), which varies from -1 to + 1:

Since , these two measures will produce identical rankings for the strength of association 
between the members of a lemma pair. For this reason, only the KUL score was evaluated by Daille.

Phi-squared coefficient ( ), which varies from 0 to infinity. This score has been used by Gale and Church (1991) 
to align words inside aligned sentences.

Specific mutual information (MI) varies in the range minus infinity to plus infinity. It has been used by Brown et al. 
(1988) for the extraction of bilingual resources and by Church and Hanks (1990) for monolingual extraction. MI 
may be expressed in terms of the contingency table frequencies as follows:



This measure gives too much weight to rare events. For example, if we have a word which occurs just once in the 
first language and another which occurs just once in the second, and they both occur within the same aligned region, 
the mutual information will be higher than if the words each appeared twice
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and both times occurred in aligned regions. In order to give more weight to frequent events, the a on the top line of 
the MI formula was successively replaced by all powers of a from two to 10. The cube of a was empirically found to 
be the most effective coefficient, yielding the cubic association ratio (MI3)

Log-likelihood coefficient (LL), introduced by Dunning (1993):

where each log is to the base e.

Daille also used Shannon diversity to discriminate between candidate technical terms. In theory, a lemma which 
appears in various different lemma pairs is an item which either very frequently allows the creation of a term (such 
as système) or never leads to the creation of a new term (such as caraatéristique). Consider a small French technical 
corpus, where just three nouns and three adjectives have been found. The frequencies of each possible lemma pair in 
the format (noun-i, adjective-j) are shown in Table 4.8. For example, the frequency of the lemma pair (onde, 
circulaire), denoted nb(onde, circulaire) is found at the intersection of the row for the noun onde and the column for 
the adjective circulaire. We are particularly interested in the 'marginal totals', nb(i,-) and nb(-,j), such as nb(onde,-) 
which is the total number of lemma pairs in which onde was the first term and nb(-,porteur), which is the number of 
lemma pairs in which porteur was the second term.

N-i, Adj-j progressif circulaire porteur Total

onde 19 4 6 nb(onde,-)

limiteur 9 0 0 nb(limiteur,-)

cornet 0 2 0 nb(cornet,-)

Total nb(-,progressif) nb(-,circulaire) nb(-,porteur)

Table 4.8 
Relative frequencies of lemma pairs in a hypothetical corpus

 

Using the values in Table 4.8 (which is the contingency table of the noun-i, adjective-j structure), Shannon's 
diversity of the noun onde is equal to:

H(onde,-) = nb(onde,-) .log nb(onde,-) - (nb(onde, progressif).log nb(onde, progressif) + nb(onde, circulaire).log nb
(onde, circulaire) + nb(onde, porteur).log nb(onde, porteur)).

Once again all the logs are to the base e.

Expressed formally,
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and analogously,

Two related quantities, hi and hj, were found, by dividing the diversity values H(i,-) and H(-,j) respectively by nij, 
the number of occurrences of the pairs.

Daille performed a graphical evaluation of all the measures discussed in this section. Candidate terms were counted 
as true technical terms if they either appeared in the Eurodicautom terminology data bank or two out of three domain 
experts judged them to be so. For each measure, the candidate terms were sorted according to decreasing score. This 
list was divided into equivalence classes each containing 50 successive pairs. The results of each score were 
represented graphically as a histogram in which the points along the x-axis corresponded to the equivalence classes, 
and the y-axis was the proportion of lemma pairs which were true technical terms. For an ideal measure, the 
histogram would show that all the lemma pairs in the topmost equivalence classes were true technical terms, while 
none of the lemma pairs in the bottommost equivalence classes were true technical terms. Between these two types 
of equivalence classes, there would be a single sharp cut-off point or threshold. The histograms for 18 different 
measures were found, and compared with the ideal histogram. The histogram for MI3 and the ideal histogram are 
shown in Figure 4.2.

Figure 4.2 
Comparison between MI3 and an ideal measure
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The measures examined were N1, N2, NC, OCH, YUL, FAG, AFF, hl, h2, H(i,-), H(-,j), LL, MI, MI2, MI3, KUC 
and SMC. N1 is the number of times the first lemma appears first in all lemma pairs, N2 is the number of times the 
second lemma appears second in all lemma pairs, NC is simple frequency of the lemma pair, AFF is the affinity 
measure of Gaussier and Langé (1994), described in Section 3.2.6, and MI2 is the square association ratio, analogous 
to the cubic association ratio.

The only four measures which seemed at all effective in the identification of true technical terms were the log-
likelihood coefficient, the Fager and McGowan coefficient, the cubic association ratio and the simple frequency of 
the lemma pair. Of these four, the log-likelihood coefficient was preferred, since it is a well-established statistical 
technique, adequately takes into account the frequency of the lemma pairs and behaves well whatever the corpus 
size. Based on the shape of the histogram alone, simple frequency would be the best measure, but by definition it 
cannot pick out any low-frequency technical terms.

3.2.5 Mutual information for the extraction of bilingual word pairs

Gaussier, Langé and Meunier (1992) used the specific mutual information measure to automatically extract bilingual 
word couples from bilingual corpora. They start with the Canadian Hansards, a bilingual corpus in both English and 
French, where each English source sentence is aligned with its target French translation. The strength of association 
between an English word denoted e and a French word denoted f will be high if these two words are translations of 
each other. The formula for specific mutual information, I(e,f), as used by Gaussier, Langé and Meunier, is as 
follows:

In this context, p(e,f) is the probability of finding both e and f in aligned sentences. To find p(e,f), the number of 
occasions e and f are found in aligned sentences within the corpus is divided by the total number of aligned 
sentences in the corpus, whether they contain e or f or not. p(e) is the probability of finding e in an English sentence 
(found by dividing the number of times e occurs in the corpus by the total number of aligned sentences in the 
corpus) and p(f) is the probability of finding fin a French sentence.

In order to use specific mutual information in this way to find which pairs of words are translations of each other, 
the corpus must first be aligned. Gaussier, Langé and Meunier improved the alignment program of Brown, Lai and 
Mercer (1991) by taking advantage of textual mark-up such as SGML and using additional lexical information such 
as transwords. These are words which remain unchanged in the process of translation, in particular numerics or 
wholly upper-case words, such as product names or computer commands.

The initial list of candidate translations for an English word consisted of all
  
< previous page page_174 next page >
 

If you like this book, buy it!

http://www.amazon.com/o/asin/0748610324/ref=nosim/duf-20


< previous page page_175 next page >
Page 175

words which occur in at least one French sentence aligned with a sentence containing the English word. The mutual 
information between each candidate French word and the English word is calculated, and those French words having 
mutual information greater than an empirically found threshold are retained. For example, the following list of 
candidate translations for the English word prime was found, and is given in Table 4.9, along with the observed 
mutual information.

French word Mutual information

sein 5.63

bureau 5.63

trudeau 5.34

premier 5.25

résidence 5.12

intention 4.57

no 4.53

session 4.34

Table 94 
French words with highest mutual information with the English word 
prime

 

Using their best match criterion, Gaussier et al. eliminated from Table 4.9 all words which had been found to have a 
higher mutual information score with an English word other than prime. This left only the word premier, which was 
deemed to be the French translation of prime. In their experiments, about 65 per cent of English words were 
assigned their correct French translations, about 25 per cent had no French word assigned (these were mainly words 
with no real French equivalent) and about 10 per cent had an incorrect French translation assigned to them.

3.2.6 Pattern affinities and the extraction of bilingual terminology

There is a need for multilingual terminology extraction, both for the documentation of products and the 
standardisation of terminology. As industrial activities become increasingly international, there is an increased need 
for multilingual terminology. Acquisition of such terminology can be performed by domain experts, but is a slow 
and expensive process. Gaussier and Langé (1994) address a method of partially automating bilingual term 
acquisition, to be discussed below.

After Daille, a finite state machine was implemented which extracts MWU candidates in the form of lemma pairs. 
These candidates are not always 'good' terms but of syntactic patterns known to be productive. About 4000 
candidates were found for each language in a part-of-speech-tagged and lemmatised bilingual corpus of about 
200,000 words. The corpus had been manually aligned at the sentence level, and was used to derive measures of 
association
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between the candidate terms in the English side of the corpus and their possible French translations on the other side, 
based on the number of times a source candidate and a target candidate occurred in aligned sentences. Gaussier and 
Langé tested four measures based on contingency tables: mutual information, phi-square, Fager and McGowan's 
coefficient and the log-likelihood coefficient. A linguistically motivated improvement was tried, based on the 
observation that in 81 per cent of cases, a French base MWU of the form Noun1 de Noun2 was a translation of an 
English base MWU of the form Noun2 Noun1. It was proposed that the association measures between term pairs be 
enhanced by a weighting factor based on pattern affinity, which was the probability that the syntactic pattern of the 
source candidate gets translated into the syntactic pattern of the target candidate.

The second method made use of bilingual associations between the single words composing the candidates to derive 
a measure between the candidates. For example, the mutual information between the English candidate term earth 
station and the French station terrienne was the sum of the mutual information between the first English word and 
the first French word (earth and station), the first English word and the second French word (earth and terrienne), 
the second English word and the first French word (station and station), and the second English word and the second 
French word (station and terrienne).This measure was called mutual information with double association.

In order to evaluate these measures, Gaussier and Langé produced a reference list containing (source, target) pairs of 
base MWUs. This list was made from an existing list established by terminologists, complemented with good pairs 
extracted from the corpus. Although this list was not definitive, it allowed a fast, costless evaluation of different 
approaches to term extraction.The candidate list was automatically sorted according to decreasing association score 
and compared with the reference list. In order to perform an evaluation, a list of the n best candidates according to a 
certain score was compared with the reference list, according to the criteria of recall and precision. In many 
information retrieval applications, retrieval effectiveness is measured according to these two criteria (Salton and 
McGill 1983). Recall measures the proportion of relevant information retrieved in response to a search procedure 
(the number of relevant items actually obtained divided by the total number which would have been obtained in a 
perfect search). Precision measures the proportion of retrieved items that are in fact relevant (the number of relevant 
items obtained divided by the total number of retrieved items). Candidate terms were considered to be good if since 
they occurred in the reference list. Precision and recall were then found using the following formulae:
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The following measures were compared: log-likelihood, MI, MI with pattern affinity weight, and MI with double 
association. It was found that MI with pattern affinities gave slightly better results than MI alone. For example, for 
the 100 highest-scoring candidates in each list, MI alone gave 90 per cent precision and 7.2 per cent recall, while MI 
with pattern affinity gave 94 per cent precision and 7.6 per cent recall. Using the first method, the log-likelihood 
measure was found to degrade rapidly as the length of the candidate list was increased, but, unlike mutual 
information, did not privilege rare events. MI was preferred, however, since it allows the incorporation of pattern 
affinities. The second method (double association) was generally better than the first, giving good recall especially 
for long candidate lists. However, the two different methods emphasise quite different associations. Of the tint 100 
candidates obtained by each method, only six overlap. Thus, it is best to combine the candidates from both 
measures. In this, a list of mainly good terms was prepared and shown to a terminologist. It would be a much 
simpler task simply to delete the poor candidates than to create the entire list manually. The overall satisfaction of 
the human posteditor can be improved by setting the affinity measure thresholds in order to discard less relevant 
candidates.

3.2.7 Kay and Röscheisen's text-translation alignment algorithm

Most techniques which use measures of affinity between words across languages depend on the prior alignment of 
parallel texts. We will thus devote the next two sections to descriptions of automatic text alignment algorithms. The 
corpora are divided into regions, typically one or two sentences long, to show which sentence or sentences of one 
language correspond with which sentence or sentences in the other. The two languages are referred to as the source 
language and the target language. In machine translation, we say that we are translating from the source language to 
the target language. According to Kay and Röscheisen (1993), parallel aligned corpora are useful as an aid to 
translators, students of translation, designers of translation systems and lexicographers. The advantages of using 
aligned corpora as a source of lexicographic data as opposed to published dictionaries or term banks are that one can 
obtain information on topical matters of intense though transitory interest, and that, with contemporary corpus data, 
one can obtain information on recently coined terms in the target language.

The alignment procedure of Kay and Röscheisen depends on no information about the language pair involved other 
than what can be derived from the texts themselves. The method is based on the premise that a pair of sentences 
containing an aligned pair of words must themselves be aligned, and requires the establishment of a word sentence 
index (WSI), an alignable sentence table (AST), a word alignment table (WAT) and a sentence alignment table, 
described below.

The WSI is a table with an entry for each different word in the text, showing the sentences in which that word 
occurs. For example, the entry proton 5 15
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would show that the word proton occurs in sentences 5 and 15. One WSI is required for the text in each language.

The AST is a matrix where each entry (m, n) shows whether or not the nth sentence of the source language and the 
nth sentence of the target language could possibly be aligned. Some alignments are forbidden, because of the 
following constraints:

1. the first sentence of the source language must align with the first sentence of the target language

2. the last sentence of the source language must align with the last sentence of the target language

3. there must be alignment whenever an 'anchor' point has been identified, which is where a word in one language is 
without doubt a translation of a word in the other. For all other points, the range of possible target sentences with 
which a source sentence can align increases with the distance from an anchor point.

The WAT is a list of pairs of words, one in each language, which have been found using Dice's coefficient to have 
similar distributions in the text, and thus can be confidently assumed to be translations of each other. Dice's 
coefficient is found using the formula 2c/(a + b), where c is the number of times the two words occur in 
corresponding positions, a is the number of times the source word occurs in the text and b is the number of times the 
target word appears in the text. For example, if the word electric occurs in sentences 50, 62, 75 and 200 of an 
English text, and the word elektrisch occurs in sentences 40 and 180 of a German text, and the AST contains the 
pairs <<50, 40> and <<200, 180>, but none of the other possible pairings of these words, then Dice's coefficient is 

. For inclusion in the WAT, a word pair must have an above threshold similarity metric 
and must also occur at least a given number of times in the corpus.

The sentence alignment table (SAT) records for each pair of sentences how many times the two sentences were set 
in correspondence by the following procedure, where sentence pairs are associated if they contain words that are 
paired in the WAT. For each word pair v, w a correspondence set is created. A sentence pair <sv, sw>, containing 
words v and w, is included in the set if that word pair is in the AST, v occurs in no other sentence sh, and w occurs in 
no other sentence sg, such that <sv, sh> or <sw, sg> is also in the AST. Each sentence pair in the correspondence set 
of the word pair <<v,w> is added to the SAT. A count is kept of the number of times each particular sentence pair 
association is supported. Sentence associations that are supported more than a threshold number of times are 
transferred to the AST.

The process continues in cyclical fashion, where the updated AST is used to compute a new WAT, which in turn is 
used to produce a new SAT.The procedure stops after a certain number of iterations, or when no further updates are
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produced in a whole iteration. Throughout the procedure, no crossover in the sentence alignment is allowed. That is 
to say, if two sentences sv and sw are aligned, then sentences occurring before sv cannot be aligned with sentences 
occurring after sw. The SAT is the final output of the program.

3.2.8 Production of probabilistic dictionaries from pre-aligned corpora

The Kay and Röscheisen (1993) algorithm performs two functions simultaneously, namely sentence alignment as 
recorded in the sentence alignment table, and word alignment as recorded in the word alignment table. This is, in 
effect, a probabilistic dictionary. Other algorithms such as that of Brown, Lai and Mercer (1991) or Gale and Church 
(1993), described in Chapter 3, Section 4.9.3, also perform the task of sentence alignment, thus producing parallel 
aligned corpora, but other statistics such as those described by Daille (1995) must be used if probabilistic 
dictionaries are to be created from parallel aligned corpora. In order to create bilingual word lists from parallel 
sections of the International Telecommunications Union (ITU) corpus, McEnery and Oakes (1996) concentrated on 
the identification of words in English which had many characters in common with their candidate French 
translations. To quantify the degree of lexical similarity between such word pairs, they used approximate string 
matching techniques such as those described in Chapter 3, Section 4, and in particular, Dice's similarity coefficient. 
They were able to demonstrate that prior alignment of the corpus greatly enhanced the accuracy of identifying 
bilingual word pairs using approximate string matching techniques. First of all, they used word pairs drawn from the 
respective vocabulary lists of the unaligned corpus. Thus, lexically similar word pairs were considered to be 
translations of each other, even though there was no guarantee that they arose from parallel sections of the corpus. 
Their results for this part of their experiment are given in Table 4.10. In each case, the accuracy value (Accuracy (a)) 
given is the percentage of lexically similar word pairs which were true translations of each other. Their results are 
also shown (Accuracy (b)) for the aligned corpus, where the identified word pairs were both lexically similar and 
arose from corresponding sentences of the corpus. It may be seen that the accuracy of their method was greatly 
enhanced by prior alignment of the corpus.

Dice score 0.4 0.5 0.6 0.7 0.8 0.9 1

Accuracy(a) 0 7 21.5 49 81.6 97 100

Accuracy(b) 41.1 92.7 90.2 100 100 100 100

Table 4.10 
Accuracy of Dice's similarity coefficient in retrieving bilingual word pairs from (a) the token list 
of an unaligned corpus and (b) parallel regions of an aligned corpus
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3.2.9 Collocations involving more than two words: the cost criterion

In order to extract collocations from corpora, Kita et al. (1994) used their 'cost criterion', which depends on both the 
absolute frequency of collocations and their length in words. Absolute frequency alone is not an effective measure 
for comparing overlapping phrases such as in spite and in spite of, because the frequency of the shorter sequence 
will always be more than or equal to that of the longer sequence. However, the word of occurs so often immediately 
after in spite, that we must conclude that in spite of is the full collocation rather than in spite. This observation may 
be expressed using the concept of 'reduced cost'. In our example, a is the subsequence in spite, b is the sequence in 
spite of, f(a) is the frequency of in spite in the corpus, f(b) is the frequency of in spite of and |a| is the length in words 
of in spite (2). The reduced cost for a, denoted K(a), is given by the formula

Thus, since in spite is almost always followed by of,f(a) and f(b) will be almost the same and the value of K(a) will 
be low. However, if we make in spite of equal to a, and in spite of everything equal to b, the frequency of b will be 
less than that of a, since in spite of can be followed by a number of fairly likely possibilities, such as that, this or 
everything. In this case, K(a) will be greater than it was for in spite, suggesting that in spite of is more likely to be 
the full collocation.

Kita et al. used both mutual information and the cost criterion to extract collocations from the ADD (ATR Dialogue 
Database, consisting of parallel keyboard and telephone conversations in Japanese and English). The subsection of 
the corpus they used concerned travel information. The cost criterion was found to be the more suitable measure for 
language learning purposes, picking out everyday phrases such as is that so, thank you very much and I would like 
to, while mutual information tended to pick out specific terms such as Fifth Avenue or slide projector.

Jelinek (1990) suggests a generalisation of the mutual information formula which allows one to find the associative 
strength of collocations involving more than two words. First of all the mutual information is found for pairs of 
words, and those pairs with above-threshold mutual information are retained. At the next round of this iterative 
procedure, these pairs are treated as single words, and the mutual information between these pairs treated as single 
words and other single words is found. The resulting pairs with above-threshold mutual information from this 
iteration are then regarded as single items for the next iteration. This procedure continues, producing ever-longer 
word sequences, until one iteration takes place in which no sequence-word pairs are found with above-threshold 
mutual information.

3.2.10 Factor analysis to show co-occurrence patterns among collocations

A knowledge of collocations can show how many different senses a word has, since each different sense of a word 
will have its own set of collocates. Biber
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(1993) uses factor analysis to find different sets of collocates for an ambiguous word in a monolingual corpus, as 
will be described in this section, while Gale, Church and Yarowsky (1992) use the collocations between the different 
senses of a word and their possible translations in a bilingual parallel corpus, as will be described in the next section. 
Biber states that one of the main problems for applied natural language processing are gaps in the lexicon, including 
missing words and word senses. The lexicon can be enhanced relatively easily due to the availability of 
electronically-stored corpora, but the identification of additional word senses is a more difficult task. It is often 
difficult to manually group concordance entries according to word sense, since there may be a vast number of entries 
for the word of interest. As we have seen, statistical techniques such as the use of mutual information or t scores 
(Church et al. 1991) have been used to measure the differences between the collocational behaviour of near-
synonyms such as strong and powerful. However, Biber points out that these methods alone do not show how many 
different senses a word has, and thus human judgement must also be used.

Biber used the technique of factor analysis to identify the basic word senses associated with the words certain and 
right. This technique, described in more detail in Chapter 3, Sections 2.6 and 2.7, shows which groups of words tend 
to co-occur in different subtexts of a corpus. If each of these subtexts coherently focuses on a single topic, then the 
different word groupings containing the word of interest that appear in these subtexts will often reveal the different 
possible senses of that word, since words will be used in a single sense throughout the domain of a subtext. The 
input data for Biber's factor analysis consisted of the frequency counts of each collocation of a given word with 
certain or right which occurred more than 30 times in an 11 million-word subsample of the Lancaster-Longman 
corpus. It was assumed that each of these collocational pairs would have a strong relation to a single sense of certain 
or right, and it was hypothesised that the collocational pairs corresponding to a given sense of the word under study 
would be grouped together by the factor analysis. Each collocational pair was associated with each resulting word 
group or 'factor' to a degree measured by its 'loading'. Only the larger loadings were considered in interpreting the 
factors. Three factors were found for certain, the first two factors grouping word pairs which indicated that certain 
was used in the sense of particular, and the third factor grouping word pairs where, certain was used in the sense of 
sure. The first factor included the pairs certain other and certain types, the second included certain extent and 
certain aspects, while the third included certain that and make certain. Four factors were found for right, 
corresponding to the senses of the right hand side, directly or exactly, OK or correct, and a less clear-cut category. 
The first factor included the pairs right hemisphere and right ear, the second included right there and right back, the 
third all right and that's right and the fourth right you and right so.
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3.2.11 Mutual information for word segmentation

A slightly different grouping problem faces us when we consider Chinese. Chinese words may consist of a single 
character, but often two or more characters are required to constitute a single word. In Western languages, lexical 
words are delimited by spaces, but this is not the case in Chinese texts and so a method of segmenting text into 
words other than the recognition of spaces is required. Luk (1994) proposes word segmentation based on the bigram 
technique which employs a dictionary of bigrams or two-character sequences extracted from the text which have 
either a high frequency of co-occurrence or high specific mutual information. A segmentation marker is placed 
between two adjacent characters in the text if this two-character sequence does not appear in the dictionary. This 
method effectively extends the concept of mutual information to cover sequences of three or more characters. Using 
this method, the overall mutual information of a sequence is taken to be the mutual information of its 'weakest link' 
or the two-character subsequence with the lowest mutual information of any adjacent character pair in the sequence.

3.2.12 Smadja's XTRACT program for the extraction of collocations

Smajda (1991, 1992) describes the XTRACT 5 program which was designed to automatically extract collocations 
from a corpus. It is not a concordance program as such, but it does represent the type of processing which would be 
good for a concordancer to carry out. The domain of the corpus used by Smadja was newswire stories from the 
Associated Press, where collocations are very common. In the news story he analysed (1992), every sentence 
contained at least one collocation. As collocations found in a corpus belonging to a particular genre such as news 
stories are sublanguage specific it is of particular value to extract collocations from them, since compiled lists of 
collocations used in a particular sublanguage are generally unavailable.

Smadja assumes that two words co-occur if they appear in the same sentence and are separated by less than five 
words. For each pair of collocating words, a vector of 10 values is created, such as that shown in Table 4.11. Each 
value corresponds to the number of times the two words were found p words away from each other. For example, 
the entry under p-3 for the words trade and free shows the number of times the second word free was found to occur 
exactly three words before the first word trade. In a flexible collocation, the words may be inflected, the word order 
may vary and the words can be separated by any number of intervening words. For example, the phrase to take steps 
can appear as took immediate steps or steps were taken to. If the word order and inflections are fixed, and the words 
are in sequence, the collocation is said to be rigid. An example of a rigid collocation is a fixed compound such as 
International Human Rights Covenants. The collocation between the two words of Table 4.11 is rigid, since 99 per 
cent of the instances are in the form free trade. There are no instances of trade free, an example of the two words 
being in
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complementary distribution. The other values in the table are similar to those expected if the co-occurrence between the two words 
were more or less random.

Total p-5 p-4 p-3 p-2 p-1 p+1 p+2 p+3 p+4 p+5

8031 7 6 13 5 7918 0 12 20 26 24

Table 4.11 
Associations between trade and free

 

The goal of the first stage of the XTRACT program is to isolate frequent and strong relationships such as free trade. A table similar to 
Table 4.11 is created for every word pair in the corpus, and the part of speech of each collocate is recorded. An optional feature of 
XTRACT is that all the words involved in lexical relations can be converted to their inflectional lemmas, when the data for words 
which map to a common lemma is combined. It is assumed that if two words appear in a collocation they must not only appear 
together significantly more often than expected by chance, but also in a relatively rigid way. Thus, the first filtering process used by 
XTRACT to extract the most likely collocations is selecting the collocates of a given word with a large total frequency (found by 
summing the values for all 10 positions in Table 4.11.

The second filtering process examines the statistical distribution of the positional occurrences. Word pairs producing a flat histogram 
(where the height of the bars depicts the number of occurrences and each bar corresponds to a relative position) show that the 
frequency of occurrence is largely independent of relative spacing, so the collocation is not rigid. Word pairs are thus preferred if they 
produce a histogram with a distinct peak or peaks, since the greater the height, the more strongly the two words are lexically related. 
Lexical relations are filtered if the height is below an empirically found threshold. A second criterion used in the filtering process is 
that of 'spread', which is the variance for the frequency values of each collocate at each of the possible 10 positions. Retaining only 
those word pairs which show high spread enables the removal of 'conceptual collocations' such as bomb-soldier and trouble-problem, 
collocations in which the two words co-occur because they belong in the same context rather than form a true lexical collocation 
(Smadja 1991).

The third filtering process uses both statistical and part of speech information. A collocation is accepted if the two seed words are 
consistently used in the same syntactic relation. To be retained, a word pair must consist of the same syntactic units (such as verb-
object, verb-subject, noun-adjective or noun-noun) at least on a threshold percentage of occasions on which it appears. In the 
following section, we will see how a program called Champollion is able to start with the pairwise associations produced by 
XTRACT, and from these produce collocations involving more than two words.
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3.2.13 Extraction of Multi-word Collocation Units by Champollion

Smadja, McKeown and Hatzivassiloglou (1996) have produced a program called Champollion, which, if supplied 
with a parallel corpus in two different languages and a list of collocations in one of them, uses statistical methods to 
automatically produce the translations of those collocations. The XTRACT program described in Section 3.2.12 was 
used with the English portion of the Canadian Hansard corpus to compile a list of English collocations. The task of 
translation itself requires a prealigned corpus, and this alignment was performed using the Gale and Church 
algorithm, described in Chapter 3, Section 4.9.3. Since this algorithm is most accurate when identifying 1:1 
alignments (where, for example, one sentence of English corresponds exactly with one sentence of French), only 
those sections of the corpus which were found to align in 1:1 fashion were used, which constituted about 90 per cent 
of the corpus.

Once the list of source language collocations has been obtained, Champollion starts by identifying individual words 
in the target language that are highly correlated with the source collocation, using Dice's coefficient as the similarity 
measure. In this way a set of words in the target language is produced, from which the candidate target language 
collocations will be derived. It is assumed throughout that each source language collocation is both unambiguous 
and has a unique translation in the target language. This means that decisions about which words or phrases are 
translations of each other can be based solely on their mutual co-occurrence behaviour within the corpus, and the 
immediate contexts surrounding them can be ignored.

Dice's similarity coefficient for a source phrase X and a target phrase Y is given by the formula Dice 
, where fxy is the number of aligned regions in which both the source phrase X and the 

target phrase Y appear, fx is the total number of regions in which the source phrase X appears and fy is the total 
number of regions in which target phrase Y appears. Throughout the procedure of finding the best translation for 
each source collocation, sub-optimal translations and partial translations are successively seeded out if their Dice 
coefficient with respect to the source collocation falls below an empirically selected value.

Dice's coefficient was considered superior to information theoretic measures such as mutual information which are 
widely used in computational linguistics. The formulae for both specific mutual information and average mutual 
information have been given in Chapter 2, Section 2.7. The main reason that Dice's coefficient was preferred was 
that in this translation process, an aligned region of the corpus where one or both of the source and target phrases is 
present is a far more significant finding than a region where neither is present. This is because such a positive match 
is a much rarer occurrence than a negative match. The coefficient reflects this, since only the number of times where 
one (fx or fy) or both of the phrases (fxy) are present are included in the formula. If using an information theoretic 
measure such as average mutual
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information, on the other hand, instances where neither phrase is present are assigned equal importance to instances 
where both source and target phrase are present. This is because information theory considers both possible 
outcomes of a binary selection process (0 or 1) to have equal precedence, and thus a positive match when two 
variables have the value 1 is no more or less significant than a negative match when two variables equal 0. Average 
mutual information is said to be a completely symmetric measure: if all the ones were exchanged for zeros and vice 
versa, its overall value would remain the same. With specific mutual information we have an intermediate situation, 
since the measure is neither completely symmetric nor does it completely ignore negative matches.

Given a source English collocation, Champollion first identifies in the English section of the corpus all the sentences 
containing the source collocation. It then attempts to find all words that can be part of the translation of the 
collocation; that is, those target language words that are highly correlated with the source collocation as a whole. 
These words satisfy the following two conditions:

1. the value of the Dice coefficient between the word and the source collocation W is at least Td, where Td is an 
empirically chosen threshold

2. the word appears in the target language opposite the source collocation at least Tf times, where Tf is another 
empirically chosen threshold.

This second criterion helps limit the size of the set of words from which the final translation will eventually be 
produced.

Now that this original set of target words highly correlated with the source collocation has been identified, 
Champollion iteratively combines these words into groups. The program first forms all possible pairs of words in the 
original set, and identifies any pairs that are highly correlated with the source collocation, using criteria analogous to 
(a) and (b) above, except that the correlation between pairs of words rather than individual words is found. Next, 
triplets are produced by adding a highly correlated word to a highly correlated pair (producing the Cartesian product 
of the word groups retained at the previous stage and the single words in the original highly correlated set), and the 
triplets that are highly correlated with the source language collocation are passed to the next stage. This is the main 
iteration stage of the algorithm, and the process is repeated until no more highly correlated combinations of words 
can be found. At each stage of the process, it is necessary to identify the locally best translation, this being the single 
word, word pair, word triple and so on that has the greatest Dice score with the source translation of all possible 
translations with that number of words. Each of these word groups is stored in a table of candidate final translations, 
along with its length in words and Dice score. The entries in this table for each iteration when the source collocation 
is official languages are given in Table 4.12. In each case, the number of the iteration is given first, followed by the 
highest-scoring word set found at that iteration,
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then the Dice score for that translation, and finally the number of retained word sets at that iteration. Finally, on the ninth iteration, 
no highly correlated word group is found and the iteration stops. Using this table, Champollion selects the group of words with the 
highest similarity coefficient as the target collocation. If two word groups have the same similarity coefficient with the source 
collocation, the longer is taken to be the translation.

1. officielles 0.94 (11)

2. officielles langues 0.95 (35)

3. honneur officielles langues 0.45 (61)

4. déposer honneur officielles langues 0.36 (71)

5. déposer pétitions honneur officielles langues 0.34 (56)

6. déposer lewis pétitions honneur officielles langues 0.32 (28)

7. doug déposer lewis pétitions honneur officielles langues 0.32 (8)

8. suivantes doug déposer lewis pétitions honneur officielles langues 0.20 (1)

Table 4.12 
Candidate translations at each iteration of the Champollion process for the source collocation Official Languages

 

Having found the best translation among the top candidates in each group of words, the program determines whether the selected 
translation is a single word, a flexible collocation or a rigid collocation by examining samples in the corpus. For rigid collocations, 
the order in which the words of the translation appear in the corpus is reported. The definition of a rigid collocation is that in at 
least 60 per cent of cases the words should appear in the same order and at the same distance from one another.

Champollion does not translate closed-class words such as prepositions and articles. Their frequency is so high in comparison to 
open-class words that including them in the candidate translations would unduly affect the correlation metric. Whenever a 
translation should have included one closed-class word, the program produces a rigid collocation with an empty slot where that 
word should be.

3.2.14 Use of a Bilingual Corpus to Disambiguate Word Sense

Collocation is not the only means available to us for disambiguating word meaning. Dagan, Itai and Schwall (1991) argued that 
'two languages are more informative than one' in disambiguating word sense. They showed that it was possible to use the 
differences between certain languages to infer information about the different meanings of certain words. Rather than using 
differences between the sets of collocates for different meanings of a word as a means of discriminating between them, it is 
possible, using an aligned corpus, to study the co-occurrence pattern of a word in one language with its translation in the other 
language in aligned sections of the corpus. Such co-occurrences are
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similar to collocations in a single language, if we consider the allowable span in which two collocates may appear to 
include the aligned section of the other language. Gale, Church and Yarowsky (1992) followed this approach, 
making use of the Canadian Hansards which are available in machine-readable form in both English and French. For 
example, they considered the polysemous word sentence, which may mean either a judicial sentence (normally 
translated by peine) or a syntactic sentence (translated as phrase). This simple technique will not always work, since 
interest translates as intérêt for both monetary and intellectual interest. And in Japanese, for example, the word for 
wear varies according to the part of the body, whereas in English we would make no distinction.

The Hansards provided a considerable amount of training and testing material. In the training phase, Gale, Church 
and Yarowsky collected a number of instances of sentence translated as peine, and a number translated by phrase. 
Then, in the testing phase, the task was to assign a new instance of sentence to one of the two senses. This was 
attempted by comparing the context of the unknown instance with the contexts of known instances.

The following formula was used to sort contexts denoted c, where contexts were defined as a window 50 words to 
the left and 50 words to the right of the ambiguous word:

This formula means that for every word token in the context, we must estimate the probability that the token appears 
in the context of sense1 or sense2, then multiply together the resulting  ratio 
for every word. Gale, Church and Yarowsky found that words which have a large value for the quantity 

 tend to provide important contextual clues for 
the scoring of contexts. Table 4.13 shows some words that, when found in conjunction with the polysemous term 
drug, have a large value for this quantity. The actual base of the logarithms they used is not stated, but any base 
would give the same rank order of contexts.

Word Sense Contextual clues

drug medicaments prices, prescription, patent, increase, generic, companies, upon, consumers, 
higher, price, consumer, multinational, pharmaceutical, costs.

drug drogues abuse, paraphernalia, illicit, use, trafficking, problem, food, sale, alcohol, shops, 
crime, cocaine, epidemic, national, narcotic, strategy, head, control, marijuana, 
welfare, illegal, traffickers, controlled, fight, dogs.

Table 4.1 
Contextual clues for sense disambiguation for the word drug
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The next task was sentence alignment. Gale, Church and Yarowsky began by aligning the parallel texts at the sentence 
level using the method of Gale and Church (1991). The next step was to establish word correspondences, for which they 
used a program that is intended to identify which words in the English text correspond to which words in the French text. 
They use the term 'alignment' to mean that order constraints must be preserved. Thus, if English sentence e is aligned with 
French sentence f, sentences occurring before e cannot be set into correspondence with sentences occurring after f. 
Conversely, 'correspondence' means that crossing dependencies are permitted. The word correspondence task was enabled 
by the creation of contingency tables, as described in Section 3.2.4. Using these tables, the association between any two 
words can be found by making use of any one of a number of association measures such as mutual information. An 
example of input and output for the word alignment program is given in Table 4.14.

Input:

We took the initiative in accessing and amending current legislation and policies to ensure that they reflect a 
broad interpretation of the charter. = Nous avons pris l'initiative d'évaluer et de modifier des lois et des 
politiques en vigeur afin qu'elles correspondent åune interprétation généreuse de la charte.

Output:

We took the initiative in assessing and amending current legislation and policies ______ to

pris ___ initiative __ évaluer _____ modifier _______ lois __________ politiques

ensure that they reflect ______ a broad ___ interpretation of the charter.

Afin __________ correspondent ___ généreuse interpretation _____ charte

Table 4.14 
Input and output of a word alignment program

 

The conditional probabilities Pr(tok/sense1) and Pr(tok/sense2) can be estimated in principle by examining the 100-word 
contexts surrounding instances of one sense of an ambiguous word such as duty, counting the frequency of each word 
appearing in those contexts, and dividing the counts by the total number of words appearing in those contexts. This is the 
called the maximum likelihood estimate (MLE) which has a number of problems, one of which is that zero probability will 
be assigned to words that do not happen to appear in the examined contexts, even though such words occur in the corpus as 
a whole. In fact Gale, Church and Yarowsky use a more complex method of estimation called the interpolation procedure, 
which takes into account the frequencies of words in the corpus as a whole as well as the frequency of words in the 100-
word contexts of the ambiguous word. The interpolation procedure provides a weight for each word, and the product of this 
weight and the
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frequency of the word in the corpus as a whole is a measure of how much the appearance of that word supports one sense or the 
other of the ambiguous word. For the tax sense of the word duty, the four words with the highest weight × frequency product 
were countervailing, duties, US and trade, while words with a high product for the obligation sense of duty included petition, 
honour and order.

3.2.15 G-square or Log Likelihood in the Development of a 'phrasicon'

Milton (1997) has used the G-square, G score or log likelihood measure to find overused and underused phrases in a corpus of 
learners' English when compared with a corpus of standard English. Examples of underused and overused phrases consisting of 
four units (words or punctuation marks) are shown in Table 4.15.

Underused phrases G score Overused phrases G score

In this case the 12.33 First of all, 198.39

It has also been 10.96 On the other hand 178.34

It can be seen 10.96 In my opinion, 86.02

An example of this 10.96 All in all, 67.90

good example of this 9.59 In fact, the 48.08

This is not to 9.59 In addition, the 38.44

In an ideal world 9.59 In a nutshell, 37.88

A century ago, 8.22 As we all know 30.62

Table 4.15 
Underused and overused phrases in a corpus of learners' English ranked by G score

 

There is a close correlation between the expressions overused by non-native speakers and the lists of expressions in which many 
students of English are drilled. The 'carrying over' of literal translations of phrases from the students' first language is a much 
less significant factor. Milton uses this data in the construction of a hypertext-based computer-assisted language learning 
(CALL) system.

Kilgarriff (1996a) having compared the chi-square and G-square measures, preferred the G-square. Dunning (1993) points out 
that most vocabulary items are rare, and thus words in the text are not normally distributed. The advantage of the G-square or 
log likelihood measure is that it does not assume the normal distribution.

3.2.16 Dispersion

Another set of useful measures for dealing with words and multi-word units is dispersion measures. These show how evenly or 
otherwise an item is distributed through a text or corpus (Lyne 1985, 1986). In early studies where word lists were compiled, the 
items were ranked by overall frequency or range (number of subsections in which the word appeared) alone. Range and simple
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frequency can be replaced by Juilland's D measure (Juilland et al. 1970), originally developed for Spanish texts, 
which takes into account not only the presence or absence of an item in each section of a corpus but also its 
subfrequency in each section. If the D measure for a word is multiplied by its frequency F, a value U called the 
'usage coefficient' is obtained. Dispersion measures have also been produced by Carroll (1970) and Rosengren 
(1971), which are referred to as D2 and S respectively. These measures also produce corresponding usage 
coefficients called Umand KF. Juilland and Carroll derive D and D2 first, then multiply by frequency to give U and 
Um. Thus, the usage statistics can only be as accurate as their corresponding dispersion measures.

In order to evaluate the three dispersion measures, Lyne (1985) divided the French Business Correspondence (FBC) 
corpus into five equal sections. D is calculated for a given word. If the corpus consists of five equally large 

subsections, we call the subfrequencies of that word (frequency in each sub-section) and  is used 
to denote each of these subscripts in turn. Their mean is called . We then find the standard deviation s of the 
subfrequencies, using the formula

To evaluate this formula, we first find , the mean subfrequency of the word, by adding together all the values of 

 (  etc., each of the individual subfrequencies) then dividing by n, the number of subsections in the corpus. 
Then, for each value of  we find the difference between  and that value of  and square this difference. The 
sum of these squares (taking into account all values of ) is then divided by n, to yield the variance. The square root 
of the variance is the standard deviation. To account for the fact that s increases with frequency, s is divided by the 
mean subfrequency  to give a coefficient of variation, V:

The coefficient of dispersion, D, is derived from V, and is designed to fall in the range 0 (most uneven distribution 
possible) to 1 (perfectly even distribution throughout the corpus), as follows, where n is the number of corpus 
subsections.

Carroll's D2 measure uses information theory. Entropy H is calculated as follows:

We first find the logarithm to the base 2 of the frequency of the word of interest. Then for each value of  we 
multiply by the logarithm to the base 2 of
  
< previous page page_190 next page >
 

If you like this book, buy it!

http://www.amazon.com/o/asin/0748610324/ref=nosim/duf-20


< previous page page_191 next page >
Page 191

. This sum is first divided by the word frequency F, and the result of this is subtracted from the logarithm of F 

calculated earlier. H is then divided by  to yield the 'relative entropy' or dispersion measure D2.

To calculate Rosengren's S measure, we start by calculating the usage coefficient KF, and then divide KF by 
frequency F to obtain the dispersion measure S. KF is calculated using the formula

Thus, we calculate the square root of each subfrequency, sum them, square the result and finally divide by n (the 
number of subsections). The dispersion measure is always in the range 1 (perfectly even distribution) to 1/n (most 
uneven distribution possible, where all occurrences of a word are found in the same subsection).

Lyne (1985) performed an empirical investigation of the three measures. The word rankings for 30 words taken from 
the FBC corpus, all with a frequency of 10, were found for each of the three measures, and the correlation 
coefficients between each pair of measures were found. Pearson's product moment correlation coefficient was 0.97 
for D vs D2, 0.92 for D vs S, and 0.96 for D2 vs S. Thus, all three measures were highly correlated. Lyne then 
calculated theoretical values for all three measures for a word with frequency of 10. There are 30 different ways 10 
words can be distributed across five subsections (for example, all 10 words occur in one subsection, or two words 
occur in each subsection). For each of these 30 possible distributions, D, D2 and S were calculated. D2 gave 
consistently higher values (except for equal values at the end points of the comparison graph when the score was 0 
or 1) but this difference is constant and had no effect on the rankings. D2 penalises instances where one or more 
corpus subsections have no instances of the word (referred to as 'zeros'). When comparing S and D for each of the 30 
possible distributions, S was consistently higher, reflecting the fact that its minimum value was 0.2 rather than 0. S 
penalises zeros even more than D2. In fact, D2 and S penalise not only zeros, but any subfrequency which is 
substantially below the mean. Lyne thus found that D was the most reliable of the three measures.

It is not possible to use these measures if the corpus is subdivided into sections of different sizes. Since no word 
count is ever based on a truly random sample of the target population the sample frequencies are generally 
overestimates of the true population frequencies, except that the highest-frequency items are underestimated as a 
consequence of the latter phenomenon (Hann 1973).

Chi-square can also serve as a measure of evenness of distribution. Equiprobable distributions are characterised by 
the same chi-square value. The general formula for chi-square is
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Here the observed values (O) are the subfrequencies  to  and the expected or estimated value (E) is the 
mean subfrequency .Thus

3.2.17 Hayashi's Quantification Method

Hayashi's quantification method type Ill, a method of multivariate statistical analysis, has been applied by Nakamura 
and Sinclair (1995) to the study of collocations. They counted the statistically significant collocates of the word 
woman in four subsections of the Bank of English corpus, then used Hayashi's method to cluster the collocates of 
woman with one or other of the subsections of the corpus. The Bank of English is a corpus of current English 
compiled by Cobuild. In total, it consists of over 200 million words, but in this study just four subcorpora were 
considered, taken from books in a variety of fields, The Times newspaper, spontaneous speech and BBC World 
Service broadcasts. These four experimental subsets of the Bank of English comprised over 53 million tokens in 
total.

Texts and corpora are generally classified by factors external to the text itself such as the name of the author or the 
time of writing. Much less use is made of the patterns of the language of the texts themselves, which constitutes 
internal evidence, although the work of Biber (1988) has highlighted a number of linguistic features within texts that 
might be used to differentiate those texts. Hayashi's method also deals with internal evidence, determining the 
lexical structure of the corpus by quantifying the distribution across texts of linguistic features associated with a 
word or phrase of interest, in this case the collocates of woman. The word woman was chosen because it was a mid-
frequency term, well distributed across the subcorpora. Since gender is a factor in linguistic variation, Nakamura and 
Sinclair felt that a study of woman was likely to produce variation between texts. Initially those collocates occurring 
within a window four words on either side of woman and which were significant with p<<0.001 in at least one of the 
subcorpora were extracted, yielding a total of 282 such collocates. Alongside each collocate was stored its frequency 
in each subcorpus, this raw data being amended as follows:

1. If a collocate was not significant in a particular subcorpus, its frequency figure for that subcorpus was reduced to 
nil

2. the frequency figures were normalised to account for the subcorpora being of different sizes.

The amended frequency list became the input for Hayashi's method. The method simultaneously provided each 
subcorpus and each collocate with a set of numeric quantities. The number of quantities in a set is always one less 
than
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the number of subcorpora, giving three quantities for each data item, and enabling each data item to be plotted on a 
graph with three axes, each one corresponding to a member of each set of quantities. Subcorpora and collocates can 
be plotted on the same graph, and items with similar distributional properties appear close together. For example, the 
BBC subcorpus was clustered with adjectives dealing with country, citizenship or religion, such as Palestinian or 
Korean, verbs related to violence or crime such as injure, suspect or convict, and proper nouns. All these concepts 
are frequently in the news. The other subcorpora were clustered with very different sets of collocates, showing that 
Hayashi's method forms the potential basis of a powerful technique for the comparison of texts. For example, the 
book subcorpus was clustered with words specifically related to womanhood, such as feminine, pregnancy and 
priestess.

4 Concordancing Tools Using More Advanced Statistics

Having covered a range of useful statistics, let us now look at some advanced concordance packages to see how 
widely implemented these measures are in retrieval software packages. The concordance packages which will be 
described in the following sections are WordSmith which uses the chi-square measure to identify 'keywords' (words 
whose frequency is unusually high in comparison to some norm, and thus help in genre identification), 
CobuildDirect which uses mutual information and the t score to identify significant collocates, Lexa which provides 
information on lexical densities (how a word is dispersed or clumped throughout the text), TACT, and the Hua Xia 
concordancer for Chinese text.

4.1 WordSmith

WordSmith 6 was developed by Scott (1996), and is designed for linguists and language teachers. It comprises three 
main tools called Wordlist, Concord and Keywords.

Wordlist is based on a corpus of about two million words called the MicroConcord corpus collections. It generates 
word lists in alphabetical and frequency order so the lexical content of different texts can be compared. In the 
alphabetical list, all the words in the corpus are arranged alphabetically, and the user can scroll through to read the 
frequency of each word in the corpus. The frequency list lists all the words in the corpus from the most frequent 
downwards, and for each word gives its rank, frequency in the corpus and the percentage of words in the corpus 
constituted by that word. For example, the entry for the is 1,141,967; 6.93 per cent, For a given text, Wordlist can 
provide the following statistics: the total number of words (tokens); the number of different words (types); the type-
token ratio; the average word length in letters; the average sentence length in words and the standard deviation; the 
average paragraph length in words and the standard deviation; and the number of sentences.

Concord creates concordances, providing lists of the search word in context. It identifies the commonest phrases or 
clusters around the search word in the
  
< previous page page_193 next page >
 

If you like this book, buy it!

http://www.amazon.com/o/asin/0748610324/ref=nosim/duf-20


< previous page page_194 next page >
Page 194

concordance, including the way they are normally punctuated and their frequency in the corpus. For example, the 
three-word clusters containing the search word however include However it is (frequency 22) and there are, however 
(frequency 16). Concord finds collocates of the search word: the most frequent words to its left and right. It can also 
display a graphical map showing where the search word occurs in the corpus and allowing the user to literally see if 
it is clumped or evenly distributed.

The keywords identified by the Keywords concordancing tool are words whose frequency is significantly higher in a 
small text of interest rather than in a larger general corpus. The identification of such keywords will help to 
characterise the subject matter or genre of the text. For example, one text concerned with architecture contained 
significantly more architectural terms than the general corpus, such as design, drawing and esquisse. The identified 
keywords are given in order of highest score first, where the user is offered a choice of scores between chi-square 
and Dunning's log likelihood. One entry might be school 67 0.33% 466 0.02% 723.4 p. 0.01, showing that the 
frequency of school in the small wordlist is 67, where it comprises 0.33 per cent of all word occurrences. Its 
frequency in the reference corpus is 466, comprising just 0.02 per cent of all word occurrences. The chi-square value 
is 723.4, which is significant at the 0.01 per cent level.

4.2 CobuildDirect

CobuildDirect 7 enables the user to choose between mutual information (MI) and the t score, and the output is the 
top 100 most significant collocates of a chosen keyword according to the selected score. Using MI, the word 
software was found to have the collocates OCR (optical character reader), shrinkwrap, and antivirus. Using the t 
score, the top collocates were computer and hardware. The t-score collocates tended to have a higher frequency than 
the MI collocates. The CobuildDirect corpus sampler query syntax allows one to specify word combinations, 
wildcards, part-of-speech tags and so on. A query is made up of one or more terms concatenated with a + symbol, 
where, for example, hell + hole will search for the word hell immediately followed by the word hole. Other 
available retrieval options include for example dog +4 bark, which will retrieve all occurrences of dog occurring not 
more than four words away from bark. blew@ will retrieve all grammatical variants of blew, such as blow, blowing 
and blew itself. A trailing asterisk will cause truncation to be performed, so that  will retrieve references to cut, 
cuts or cute, which all commence with the same three characters. The appropriate grammatical tag of a retrieval 
word can be specified, using the syntax word/TAG, for example, cat/NOUN.

4.3 Icame's Lexa

Lexa8 was devised by Hickey (1993) as a lexical and information retrieval tool used for corpora, particularly those 
containing historical texts. Its lexical
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analyses include tagging, lemmatisation, statistics (including number of characters, words or sentences, and lexical 
densities, all of which can be saved to a file), and it can also generate concordances (Kirk 1994). For information 
retrieval, Lexa can perform pattern-matching for user-specified strings in files.

4.4 Tact

The TACT concordancer 9 enables the production of KWAL (Key Word and Line) and KWIC (Key Word in 
Context) concordances, word frequency lists, and graphs of the distribution of words throughout the corpus. TACT 
can produce collocation lists, identifying statistically significant collocations using Berry-Rogghe's z score as 
described in Section 3.2.1. Groups of words specified by the user, such as those belonging to a common semantic 
category, can be searched simultaneously.

4.5 The Hua Xia Concordancer for Chinese Text

The Hua Xia corpus of Chinese text consists of 2 million characters, and is composed of nearly 200 weekly issues of 
Hua Xia Wen Zhai (China News Digest Computer Magazine), an electronic magazine published by the Chinese 
overseas community since 1991. A concordancer was created to retrieve sequences of Chinese characters from this 
corpus, where the output may be in order of appearance in the text, or sorted according to the alphabetical order of 
the romanised (Pinyin) equivalents on either the right or the left of the retrieved sequence. The length of the context 
on each side for each retrieved sequence may be varied. The preliminary input to this concordancer is carried out 
using a Chinese word processing package called NJStar (1991-2), which allows 16 different modes of producing 
Chinese characters from a standard keyboard. The output of the Hua Xia concordancer must also be displayed using 
NJStar for examination.

The mutual information was found for sequences of two characters, and the simple frequency counts were found for 
sequences of two to four characters within a sample of 1.4 million characters. The use of these measures facilitated 
the identification of Chinese four-character idioms and proper nouns of two to four characters. The resulting lists of 
proper nouns were incorporated into the concordancer to produce a news retrieval tool (Oakes and Xu 1994).

5 Summary

Concordancing, collocations and dictionaries are closely-related concepts. A concordance is a list of words extracted 
from an underlying corpus, each displayed with their surrounding context. Collocations are pairs or groups of lexical 
items which occur in the same context more frequently than would be expected by chance. Statistics allow 
collocations to be quantified according to the strength of the bond or bonds linking the collocating words, while 
concordances enable the visual display of collocations. A wide variety of different
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statistical measures for the identification of collocations in a corpus have been described in this chapter, which differ 
according to the size of the collocational sets they uncover and whether they are used with monolingual or bilingual 
parallel-aligned corpora. In this chapter, the correspondence of words in parallel corpora which are putative 
translations of each other has been regarded as a form of collocation across languages. Many statistical scores are 
based on the values found in the contingency table. Collocations can be also be identified syntactically, since certain 
syntactic patterns have been found to occur regularly in collocations. Two important categories of collocations are 
idiomatic collocations, which can be collated into dictionaries for learners of English as a second language, and 
technical terms which can be collated into domain-specific glossaries. A number of concordancing tools now make 
use of statistics such as mutual information or the t score for the display of collocations, or scores related to the chi-
square measure to build word lists of genre-specific terms.

6 Exercises

1. The Kulczinsky coefficient (KUC) between various word pairs was found to be as follows:

English word French word Kulczinsky coefficient

mechanical mécanique 0.99

mechanical mécanisme 0.98

engine mécanique 0.96

driver mécanicien 0.91

engine mécanicien 0.87

engine machine 0.75

mechanical machine 0.64

trouble ennui 0.59

engine ennui 0.48

driver locomotive 0.32
 

Using this information and the best match criterion of Gaussier, Langé and Meunier, infer the likeliest translation of 
engine.

2. The following table shows a small parallel-aligned corpus.

Le chat blanc. The white cat.

Le chien noir. The black dog.

Le chat grand. The big cat.



Le chien grand. The big dog.
 

a) Using this data, create contingency tables to find the cubic association ratio (MI3) between chat and each of the 
following: black, big, cat, dog, the and
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white. What is the most probable translation of chat? The higher the MI3 value, the more likely that the two terms 
are translations of each other.

b) Repeat the experiment using mutual information (MI). In what way is the result surprising?

3. The following table shows the number of times five overlapping word sequences were found in a corpus:

Sequence Occurrences

a 27,136

a number 102

a number of 51

a number of times 20

a number of times we 8
 

Using this data and the cost criterion of Kita et al., calculate which of the sequences should most properly be 
considered as a collocation.

7 Further Reading

The best general introduction to word association measures and their evaluation is given by Daille (1995).The paper 
by Kilgarriff (1996a) can be seen as complementary to this.

Notes

1. Information about resources for collocation researchers can be found on the internet, accessed via Jennifer Lai's 
homepage at http://www.ed.uiuc.edu/students/jc-lai/fal195/collocations.html

2. An MS-DOS version of the OCP called Micro-OCP became available in 1989. It can be bought from Oxford 
University Press, Walton Street, Oxford ox2. 6DP, UK.

3. WordCruncher can be bought from: Electronic Text Corporation, 780 South 400 East, Orem, Utah 84058, USA.

4. Assuming a simple word_tag style of annotation.

5. For further information about the availability of XTRACT, contact Eric Siegel at evs@cs.columbia.edu

6. WordSmith can be ordered through the internet at http://wwwl.oup.co.uk/elt/software/wsmith

7. CobuildDirect can be ordered through the internet at http://titania.cobuild.collins.co.uk/direct-info.html

8. ICAME'S Lexa can be ordered through the internet at http://www.hd.uib.no/lexa-ftp.html

9. TACT Can be obtained through the Contact Centre for Computing an the Humanities at the University of Toronto 
(email cch@epas.utoronto.ca) or ICAME (email nora.hd.uib.no)
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5 
Literary Detective Work

1 Introduction

This study will end with a detailed examination of literary detective work. While not strictly corpus linguistics, this 
work shares many affinities with corpus linguistics, particularly its focus on manipulating large data sets. 
Consequently, an examination of literary detective work can help us see how a wide range of the statistics covered in 
this book can be applied to 'real' language. A survey of literary detective work will show us what studies we might 
make with a corpus.

One aspect of literary detective work on the computer concerns the statistical analysis of writing style. In order to 
perform a computer analysis of style, most studies concentrate on features which are easily identifiable and can be 
counted by machine. The features most frequently used are:

word and sentence length

the positions of words within sentences

vocabulary studies, based on what Hockey (1980) calls the choice and frequency of words

syntactic analysis, including the additional tasks of defining and classifying the syntactic features.

Morton's (1978) criteria for the computation of statistical measures of style are given in Section 2.1.

Kenny (1982) lists a number of examples of applications in which statistics are used to compare and contrast the 
stylistic features of various texts. Foremost among them are studies of authorship attribution, covered in this chapter 
in Sections 2.2 to 2.10, using such techniques as examining the position and immediate context of word occurrences. 
For example, Morton (1965), as described in Section 2.4, measured the number of times and occurs at the start of a 
sentence. Related studies have helped determine the chronology of texts, such as Zylinski's (1906) dating of 
Euripides' plays by the increasing number of unresolved feet in his verses.
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Statistical methods can be used not only to distinguish between different authors, but also to look at variations 
within the style of a single author. An example of this is that a single author, such as Kierkegaard, might write using 
different pseudonyms and adopt noticeably different writing styles for each pseudonym, as described in Section 2.13 
(McKinnon and Webster 1971). Bailey (1969) states that chronology problems are also closely related to the 
problem of disputed authorship. Described in Sections 2.11 to 2.12, these are concerned with specifying the order of 
composition of the works of a particular author, where critics speak of the 'early' or 'late' styles of that author. As 
well as determining the position of documents in time, statistical studies can be used to estimate the place of origin 
of texts. Leighton (1971) calls this forming a literary geography of texts, and some of his work will be described in 
Section 2.15. Similar techniques are also used in forensic stylometry (Morton 1978), which includes determining the 
authorship of anonymous letters in serious crimes or distinguishing between real and fabricated confessions. Case 
studies will be provided in Section 2.16. One study which stands alone in its use of a syntactically annotated corpus 
for author discrimination will be described in Section 2.17.

Another aspect of literary detective work is determining which languages are related to each other, both in cases 
where the vocabulary of their common ancestor language is known and in cases where the vocabulary of the 
antecedent language must be inferred. The key to determining the degree of the relationship between languages is 
the identification of cognate word pairs, where a word in one language is lexically related to the word in another 
language and has the same meaning. A knowledge of cognates and their rates of disappearance from languages can 
help show the length of time elapsed since two related languages diverged, using a model related to the process of 
radioactive decay (Dyen, James and Cole 1967) and described in Section 3.2.

The decipherment of Linear B will be discussed in Section 4.1 as an example of translation without the aid of a 
computer, to illustrate the type of processes which might be facilitated by use of an electronically stored corpus, 
such as the identification of unknown prefixes and suffixes by the comparison of words which are similar but not 
identical. Even with the availability of computer corpora, there is a need for human intuition and background 
knowledge as well as the processing power of the computer. This will be illustrated in Section 4.2, a description of 
the decipherment of runes on the cross at Hackness (Sermon 1996). Finally, the translation of English into French by 
purely computational means (Brown et al. 1990) will be covered in Section 4.3.

2 The Statistical Analysis of Writing Style

2.1 Morton's Criteria for the Computation of Style

Morton (1978) describes how the largest group of words in the vocabulary of a text is the words which occur 
infrequently, being used perhaps only once (the
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Figure 5.1 
Numbers of words at various frequencies of occurrence in a 

100,000-word sample of the British National corpus

hapax legomena). Although Morton does not make the distinction, there are words which are intrinsically rare 
because they are obscure, out-of-date or specialist terms, and those which are unlikely to occur just because of the 
frequency features of open-class words. Examples of each type of rare word would be fustigate and trolley 
respectively. Figure 5.1 is a plot of the number of times a word might occur in a 100,000-word sample of written 
text from the British National corpus (horizontal axis) against the number of words which have this frequency of 
occurrence (vertical axis). The frequency of occurrence of the words grouped under 'other' ranges from 7 to 7447. 
The figure shows that the overwhelming majority of words in a corpus have a low frequency of occurrence.

These words that are hapax legomena tend to be interesting, reflecting such factors as the background, experience 
and powers of mind of an author, and conveying delicate shades of meaning. Many qualitative studies of literature 
have focused their attention on rare words, since the commonest words tend to be connectives, pronouns and 
articles, words whose meaning and use are much more prescribed and conventional than is the case with rare words. 
However, in statistical studies, the examination of occurrences of rare words tends to be less fruitful than the study 
of common words, since their low rate of occurrence makes them difficult to handle statistically. Any stylistic trait 
which is to be used in the determination of authorship must be sufficiently frequent. To test any hypothesis 
statistically, using, for example, the chi-square test, we need a minimum of five occurrences, and ideally at least ten. 
Similarly, any stylistic trait which is related to the use of nouns is unlikely to make a good indicator of authorship, 
since the use of nouns is more closely tied to subject matter than to an individual author.

For a trait to be useful in the determination of authorship, it must be one that can be numerically expressed. For 
example, some New Testament writers show Semitic influences, but when considering the number of Semitisms in a
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given book of the New Testament as estimated by different scholars, the differences in classification are so large that 
no consistent count is possible. Thus, the occurrence of Semitisms cannot be numerically expressed exactly enough 
to be used in the determination of authorship by quantitative methods.

In stylometric studies the placing of words can be described in two ways. A word can have a positional reference, 
where we say it occurs, for example, as the first, second or last word in a sentence. Alternatively, a word can have a 
contextual reference, where we say, for example, that the word occurrence is preceded by word X or is followed by 
word Y. Word order can vary much more in inflected languages such as Greek, where it can provide the basis for 
studies of word mobility. Another approach, taken in relatively uninflected languages such as English, is the study of 
immediate context, particularly the study of collocations formed by the successive occurrence of two frequent words.

In summary, the total vocabulary used by an author, which depends heavily on the use of rare words, is not an 
effective means of discriminating between writers' styles. The selection and frequency of common words is much 
more effective, especially when there are large amounts of text to sample and few contenders for its authorship. 
Morton concludes that by far the most effective discriminator between one writer and another is the placing of 
words. The absolute position of words within a sentence is the most effective method for inflected languages, and 
the immediate context of words is most effective in uninflected languages. The only disadvantage of positional 
studies is that they are dependent on punctuation, which may not always be given in early texts.

Certain word pairings such as and/also, since/because and scarcely/hardly arise from the fact that the storage 
mechanism is the human brain, where they may be stored in similar locations and retrieved in response to similar 
cues. The first reference to such word pairs, now called proportional pairs, was by Ellegård (1962). Such pairs are 
useful in comparing literary texts, since different authors tend to use one member of a pair at a higher rate than the 
other. In terms of effectiveness, proportional pairs fall between the use of frequent words and the word placement 
techniques.

2.2 Early Work on the Statistical Study of Literary Style

In 1851 a suggestion was made in a letter by de Morgan that the authenticity of some of the letters of St Paul might 
be proved or disproved by a comparison of word lengths. This is the oldest surviving reference to the creation of a 
scientific stylometry. Morton (1978) reports that de Morgan's letter contains many of the basic principles of 
stylometry, the use and description of samples, the disregarding of the meaning of words and the concentration of 
their occurrences.

In 1887 T. C. Mendenhall studied word length to compare the works of Shakespeare, Bacon, Jonson, Marlowe, 
Atkinson and Mill. He constructed the word spectrum (frequency distribution of word length) for each of these 
authors and showed that texts with the same average word length might have
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different spectra, the frequency spectrum being a graph of number of occurrences against word length. For example, 
for texts written by J. S. Mill, the mode was two characters, and in Oliver Twist the mode was three characters. 
However, the average word length for texts by J. S. Mill was 4.775 characters, compared with texts by Charles 
Dickens where the average word length was 4.312 characters. Later, in 1901, Mendenhall showed that Shakespeare 
had a very consistent frequency spectrum both in poetry and prose, distinct from that of Bacon, but not possible to 
distinguish from that of Marlowe (Kenny 1982).

In 1867 Lewis Campbell produced a battery of stylistic tests designed to differentiate between works of Plato written 
at different dates. He used word order, rhythm and lists of words occurring just once in the text. Campbell's ideas 
were confirmed by Ritter in 1888. Lutoslawski, also working with the texts of Plato, listed 500 potential stylometric 
indicators of date such as 'interrogations by means of ara between 15 per cent and 24 per cent of all interrogations'. 
Sherman, in 1888, rather than dating works by a single author, suggested that related methods could be used to 
observe the evolution of language as a whole. He found both shorter sentences and a greater proportion of simple to 
compound sentences in more modern works.

Between 1887, when Mendenhall did his work, and the present day, the science of statistics has flourished. 
Techniques have been developed to look for significant differences in data sets as opposed to random fluctuations, 
such as the t test described in Chapter 1, Section 3.2.1. The notion of sampling has been developed, to enable 
generalisations to be made without examining the whole population. Williams (1970) estimated that Mendenhall's 
results could have been obtained using a sample one-tenth of the size actually used. The advent of computers since 
the Second World War has facilitated calculations and the provision of data such as word lengths, and the handling 
of the large quantities of texts used in modern corpus linguistics.

2.3 The authorship of The Imitation of Christ

Williams (1970) reports that Yule (1939), working without the aid of a computer, used sentence length to decide that 
the 15th-century Latin work De Imitatione Christi was probably written by Thomas à Kempis rather than Jean

De Imitatione Christi Kempis Gerson(A) Gerson(B)

Mean 16.2 17.9 23.5 23.4

Median 13.8 15.1 19.4 19.9

Sentences 15 22 66 68

over 50 words

Table 5.1 
Sentence lengths in De Imitatione Christi and works known to be by Kempis and Gerson
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Charlier de Gerson. He compared four samples, each of about 1200 words, one taken from De Imitatione Christi, 
one taken from works known to be by Kempis and two taken from works known to be by Gerson. His results are 
summarised in Table 5.1. The data for the De Imitatione Christi sample is much closer to that of the Kempis sample 
than that of the Gerson sample.

In 1944, Yule used a study of vocabulary to tackle this same problem of disputed authorship. He produced and used 
a measure of 'vocabulary richness' called the K characteristic. Yule's K characteristic is a measure of the probability 
that any randomly selected pair of words will be identical. To avoid very small numbers, Yule multiplied this 
probability by 10,000. His actual formula is

where M1 and M2 are called the first and second moments of the distribution. M1 is the total number of usages 
(words including repetitions), while M2 is the sum of all vocabulary words in each frequency group, from one to the 
maximum word frequency, multiplied by the square of the frequency. M0, not used in the formula, is the total 
vocabulary used, not including repetitions. For example, imagine a situation with a text consisting of 12 words, 
where two of the words occur once, two occur twice and two occur three times. M0 is six, M1 is 12, and

Yule's characteristic increases as the diversity of vocabulary decreases, and thus it is more a measure of uniformity 
of vocabulary than of diversity. Williams (1970) suggests that Yule's formula should be modified by taking the 
reciprocal and omitting the (arbitrary) multiplication factor to produce 'Yule's index of diversity', 

Yule (1944) studied the nouns in the three samples of text taken from De Imitatione Christi, Kempis and Gerson 
according to the following criteria: total vocabulary size, frequency distribution of the different words, Yule's 
characteristic, the mean frequency of the words in the sample and the number of nouns unique to a particular 
sample. The frequency distributions for the three samples were very similar for frequently used words, but the 
number of rarely used words was greatest for Gerson, then Kempis, then De Imitatione Christi. Yule's other data is 
summarised in Table 5.2. In each case the samples for

De Imitatione Christi Kempis Gerson

Total vocabulary 1168 1406 1754

Unique nouns 198 340 683

Mean frequency of words 7.04 5.83 4.67

Yule's characteristic 84.2 59.7 35.9

Table 5.2 
Total vocabulary, mean frequency of words and Yule's characteristic for three samples of 
text
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Kempis and De Imitatione Christi resembled each other more closely than Gerson and De Imitatione Christi.

Yule made three contingency tables, the concept of which has been described in Chapter 1, Section 4.1. In Yule's 
tables a value of 37 in the box with coordinates De Imitatione Christi 3-5, Kempis 0, showed, for example, that of 
the 2454 nouns occurring in at least one of the three samples, 37 occurred between three and five times in De 
Imitatione Christi but did not occur at all in Kempis. The three tables were De Imitatione Christi x Kempis, De 
Imitatione Christi x Gerson and Kempis x Gerson, where the author occurring before the x was compared with the 
author coming after. Using these contingency tables, Yule calculated Pearson's coefficient of mean square 
contingency, (see Agresti 1990) where a coefficient c can only take the value zero for completely independent 
samples. The results are shown in Table 5.3, where the highest value of c is for the table of De Imitatione Christi x 
Kempis.

De Imitatione Christi x Kempis c = 0.71

De Imitatione Christi x Gerson c = 0.61

Kempis x Gerson c = 0.66

Table 5.3 
Pearson's coefficient of mean square contingency for three pairs of literary samples

 

Other data provided by Yule is reproduced in Table 5.4. In every case, Kempis appears to be the more likely author 
of De Imitatione Christi

Quantity Imitatio Kempis Gerson

Sum M0, Vocabulary 1168 1406 1754

Sum M1, Occurrences 8225 8203 8196

Sum M2, (Σχ2) 577665 409619 248984

Mean M (M1/M0) 7.042 5.834 4.673

1000 3 M0/M1 142 171 214

Percentage of once-nouns 44.5 44.2 45.8

Characteristic K 84.2 59.7 35.9

Table 5.4 
The sums and sundry data for a comparison of De Imitatione Christi and samples of Kempis 
and Gerson

 

2.4 The authorship of the New Testament Epistles



Morton (1978) reports that the Pauline corpus covers all 14 letters from Romans to Hebrews. He tackled two main 
problems, namely to establish the authorship of the individual epistles and to establish the integrity of the individual 
epistles. Some of them, such as Romans and II Corinthians, are regarded as being written by St Paul but with 
sections of the text open to question.

Comparing the sentence lengths in the Pauline epistles and in texts by other
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Greek-language authors, he found that the variability in sentence lengths between the various epistles was greater 
than that found in any corpus by a single author. He suggested that Romans I and II, Corinthians and Galatians could 
be attributed to Paul, while the other Epistles were the work of up to six different authors. Kenny (1982) reports that 
a weakness in Morton's argument is that his methods also reveal anomalies in II Corinthians and Romans itself.

Morton (1965) studied the relative frequency of the word kai (the commonest word, meaning and) in the Greek 
epistles of the New Testament generally attributed to St Paul. Table 5.5 shows Morton's results for 11 of the epistles, 
according to the use of kai as a percentage of the total number of words, and the percentage of sentences containing 
kai. The data appears to fall into two groups, with Romans, Galatians and Corinthians I and II producing similar 
results as if written by one author, and the other epistles producing significantly different results as if written by 
another author or authors.

kai as a percentage of all words Percentage of sentences containing kai

Romans 3.86 33.7

I Corinthians 4.12 41.6

II Corinthians 4.41 40.7

Galatians 3.22 29.3

Ephesians 5.67 67.0

Philippians 6.56 51.7

Colossians 6.27 51.8

Thessalonians I 6.73 58.0

Timothy I 5.72 54.2

Timothy II 5.41 48.9

Hebrews 5.16 49.1

Table 5.5 
The usage of kai in epistles usually attributed to St Paul

 

These studies of sentence length and Greek function words such as kai showed, according to Morton, that St Paul 
wrote only four of the New Testament epistles traditionally attributed to him, since the others show less consistency 
of style. However, when Ellison (1965) used these same attributes on English texts, they showed that James Joyce's 
Ulysses and Morton's own essays must each have been written by several authors. Other criticisms of Morton's 
methods were that he encoded his Greek texts with modern punctuation and also that sentence length varies 
considerably within random samples of text. Morton later suggested new stylistic criteria such as the part of speech 
of words coming last in a Greek sentence, the number of words between successive occurrences of kai, the relative 
occurrence of genitive and
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non-genitive forms of the Greek pronoun autos (he), and pairs of words in English which collocate such as of course 
and as if (Oakman 1980).

2.5 Ellegård's work on the Junius letters

The Junius letters are a series of political pamphlets written between 1769 and 1772 under the pseudonym Junius. 
The authorship of the letters has been attributed at various times to no fewer than 40 different people. Ellegård 
(1962) compared the anonymous Junius letters and their 157,000-word context with 231,000 words of text by Sir 
Philip Francis (the most probable contender for authorship of the Junius letters) and other 18th-century English 
writers. He found that Yule's sentence-length test was not sensitive enough to discriminate between many authors. 
The K characteristic could not be used since it requires large text samples of at least 10,000 words and some Junius 
samples are less than 2000 words.

Ellegård presented a list of 458 words and expressions (mainly content words) designated either 'plus' (occurring 
more frequently in the Junius letters than in work by other authors) or 'minus' (occurring less frequently in the Junius 
letters than in work by other authors) indicators of style. He calculated their occurrence in all the sample texts. The 
ratio of usage of a word in samples of an author's text compared with its usage in a representative sample of 
contemporary texts is called the distinctiveness ratio. The plus words have a distinctiveness ratio above 1, while the 
minus words have a ratio below 1. For example, the relative frequency of the word uniform (when used as an 
adjective) was 0.000280 in the sample of Junius texts, but only 0.000065 in the comparison sample of one million 
words. The distinctiveness ratio of uniform is then 0.000280/0.000065 which is about 4.3, showing that uniform is a 
plus word. In order to produce a reliable 'testing list' of plus and minus words, a text of at least 100,000 words is 
required. However, once this list has been produced, it can be used to test much smaller samples. Ellegård's study of 
'plus' and 'minus' words showed that Sir Philip Francis was the most likely author of the Junius letters.

As Ellegård did not use a computer for counting the words, he had to rely on his own intuition as to which ones 
occurred more or less frequently than expected. The study would have been more comprehensive if he had used a 
computer for the counting and to have counted all words, not just those he specifically noticed (Hockey 1980).

Ellegård also identified about 50 pairs or triplets of approximate synonyms such as on/upon, kind/sort, and/also, 
since/because and scarcely/hardly. Their patterns of usage in the Junius letters showed strong correspondence with 
the textual characteristics favoured by the author Sir Philip Francis, while the other authors were clearly distinct.

Austin (1966) also found lists of 'plus' words which were able to discriminate between the work of Robert Greene 
and Henry Chettle, both possible authors of The Groatsworth of Wit written in 1592. Once all spelling and 
inflectional
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variants of each word had been merged, 'plus' words were taken to be those which fulfilled the following criteria:

1. the word must occur at least ten tames in one author

2. the frequency per 1000 words in one author must exceed the corresponding frequency in the other by 1.5 -- the 
differential ratio

3. the ratio of variation within the body of works of one of the authors must be lower than the differential ratio.

Fifty words were found which fulfilled all three criteria. Austin's work demonstrates the three stages of automated 
authorship studies. Firstly, the computer can be used to look in large bodies of text for some stylistic feature with 
discriminating power; secondly, the disputed texts are searched for the presence or absence of this feature; and 
finally, a statistical analysis is performed to test the validity of the findings (Oakman 1980).

2.6 The Federalist papers

The so-called Federalist papers were published in newspapers in 1787-8 to persuade the population of New York 
state to ratify the new American Constitution. Published under the pseudonym Publius, their three authors were 
James Madison, John Jay and Alexander Hamilton. In 1804, two days before his death in a duel, Hamilton produced 
a list of which essays were written by which author. He left this list in the home of a friend called Egbert Benson. In 
1818 Madison claimed that some of the essays in the Benson list attributed to Hamilton were in fact written by 
himself. Altogether, it was agreed by both Hamilton and Madison as well as later historians that Jay wrote five of the 
essays, 43 were written by Hamilton and 14 by Madison. Another 12 were disputed, and three were written jointly 
by Hamilton and Madison (Francis 1966). In Sections 2.6.1 and 2.6.2 we will look at two contrasting approaches for 
determining the authorship of the disputed papers.

2.6.1 The Bayesian approach of Mosteller and Wallace

The stylistic features of the disputed papers could be compared with the features in the papers of known authorship. 
Unlike the case of the Junius letters which might potentially have been written by any of a large number of authors, 
in the case of the disputed authorship of the Federalist papers, there are only two candidates, Hamilton and Madison. 
Mosteller and Wallace (1963) used Bayesian statistics, described in Chapter 1, Section 6, to determine which of the 
disputed papers were written by which author, hoping that these methods would lead to the solution of other 
authorship problems. Like Ellegård, Mosteller and Wallace combined historical evidence with statistical 
computation.

The problem of deciding which variables to use to discriminate between the writing styles of Hamilton and Madison 
is difficult, because both adopted a
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writing style known as Addisonian which was very popular in their day. Since the two authors may consciously have 
tried to imitate each other's style, stylistic features which can be easily imitated  sentence length, for example  had to 
be discounted from the analysis. In this respect, variations in the use of high-frequency words might be a reliable 
criterion, since authors probably would not be conscious of using these. It is also desirable that variables should not 
vary with context (for example, sentence length in legal documents is greater than in most other texts), but must 
have consistent rates over a variety of topics. The occurrence of function words was examined since these tend to be 
non-contextual, except for personal pronouns and auxiliary verbs. The styles of Madison and Hamilton were also 
found to vary significantly in the frequency of use of various function words, such as by (more characteristic of 
Hamilton) and to (more characteristic of Madison). Some low-frequency words were also used since they tended to 
occur almost exclusively in the work of one author. For example, in a sample of 18 Hamilton and 14 Madison 
papers, enough appeared in 14 Hamilton papers and no Madison papers, and whilst appeared in no Hamilton but 13 
Madison papers. Altogether, 28 discriminating terms were found.

Two mathematical models exist which describe the frequency distribution of individual words across equal-sized 
portions of text. In the Poisson model, the occurrence of a given word is independent of the previous occurrence of 
that word  it depends only on its overall rate of occurrence. However, a writer might consciously avoid repetition of 
words on one hand, and on the other may repeat a word for emphasis or parallelism (Francis 1966).The tendency for 
the same word to appear in clusters is taken into account by the alternative negative binomial model (see Agresti 
1990). The Poisson distribution is described by a formula which, if given the average rate of occurrence of a word in 
a text of certain length in words (a single parameter), will give the proportions of text sections of that length which 
have none, one, two, etc., occurrences of the word. The Poisson formula takes the form

where e is the constant, and λ is the average number of times the word occurs per section of text.  is the 
proportion of text sections which have n occurrences of the word. n! means n multiplied by (n-1), then multiplied by 
(n-2) and so on until we reach 1.Thus . By convention, 0!=1. e to the power x is often called the 
exponential (exp) of x, and may be calculated using a typical scientific calculator. For example, if the average 
occurrence of a given word per section of text , then the proportion of text sections with no occurrences 

at all of the word  is , the proportion of text sections with just one occurrence  is 
,
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The negative binomial formula requires two parameters: the average rate of occurrence of a word and its tendency to 
cluster (non-Poissonness parameter). The negative binomial distribution fitted the observed data better than the 
Poisson distribution.

Francis (1966) gives the following example of the use of Bayesian statistics. Imagine the word also is used 0.25 
times per 1000 words by Hamilton and 0.5 times per 1000 words by Madison, and that both authors follow the 
Poisson model. Imagine too that the word also occurs four times in a 2000-word paper. The Poisson probabilities for 
a word from a 2000-word paper, Hamilton's rate per 1000 words being 0.25 and Madison's 0.5, for four occurrences 
are 0.00158 for Hamilton and 0.0153 for Madison. The calculation for Hamilton was performed as follows: since 
Hamilton used the word also 0.25 times per 1000 words, this means that he used also at a rate of 0.5 times per 2000 
words (the length of the text of unknown authorship). This rate of 0.5 becomes λ in the Poisson equation. Since we 
are interested in the probability of four occurrences of also in a 2000-word text, n is 4, and the bottom line of the 
equation is . This gives

Thus, it is more likely that Madison wrote the paper, with a likelihood ratio of 0.0153/0.00158 giving odds of about 
10 to 1. If we had had a prior opinion that Madison was the more likely author with odds of 3 to 1, this new evidence 
would be multiplied by the prior belief to yield posterior odds of 30 to 1. The next piece of evidence that we will 
examine is that the word an appears seven times in the disputed paper. Using tables of the Poisson distribution we 
find that the likelihood ratio for this eventuality is 0.0437/0.111 which is about 3/ 8. The old posterior odds become 
the new prior odds, and these are multiplied by this new likelihood ratio to give new posterior odds of 80 to 1. This 
process continues by considering the usage of a range of words whose discriminating power is high.

One of the assumptions made in this simplified analysis given by Francis is that the average rates of usage of each 
word by each author (the parameters of the model) were known. However, the true rates are unknown. We can only 
count the rates of occurrence in each word in available texts known to be written by each author, but we cannot 
possibly obtain all texts ever written by each author, and some existing texts we would exclude as their authorship 
remains controversial. The parameters must be estimated from prior information
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(for example, existing studies of word rates) and sample data (94,000 words of text by Hamilton and 114,000 words 
written by Madison).

Since the exact values of the authors' word-usage rates are not known, Francis maintains that it is better to express 
the knowledge that we do have in the form of probability distributions rather than point estimates such as 0.25 and 
0.5. Thus, rather than stating that Hamilton's rate for a given word is 0.25, we could state, using hypothetical figures, 
that there is a probability of 1/20 that his rate is less than 0.15, a probability of 1/10 that it is between 0.15 and 0.20 
and so on. Once again, Bayes's theorem is employed to combine the information contained in the prior word-
frequency distribution with the information contained in the samples of known works of the two authors about 
relative rates of word usage summarised as a likelihood ratio. Because of the imprecision in the prior information, 
Mosteller and Wallace chose several possible distributions to be sure that at least one fitted the true prior distribution 
accurately, and carried out their analysis using each of these in turn.

Thirty words were eventually chosen for the main study, since a pilot study showed them to be good discriminators 
between Madison and Hamilton. Some words were discarded because they had different rates of usage when used by 
Madison within and outside the Federalist corpus. The final list is given in Table 5.6.

Group B3A upon

Group B3B also an by of on there this to

Group B3G although both enough while whilst always though

Group B3E commonly consequently considerable(ly) according apt

Group B3Z direction innovation(s) language vigor(ous) kind matter(s)particularly probability work
(s)

Table 5.6 
Final words and word groups used by Mosteller and Wallace

 

The results were reported not in odds but in log odds, which are the natural logarithms of the odds, to restrict the 
range of results to more manageable values. (Natural logarithms or logc (sometimes written 'In') can also be 
calculated using a typical scientific calculator.) Positive values indicate a verdict in favour of Hamilton, while 
negative values indicate a verdict in favour of Madison. The method of Mosteller and Wallace was checked by 
applying it to 11 papers known to be written by each author (eight taken from the Federalist source and three taken 
from external sources). The resulting data, when assuming a negative binomial distribution, reveals that every 
Hamilton paper has positive log odds and every Madison paper negative log odds. This is evidence that their method 
is accurate. When the method was employed to obtain log odds for the three joint and 12 disputed papers, for every 
prior distribution tested the resulting log odds were greatly in favour of Madison being their author.
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Oakman (1980) notes that Mosteller and Wallace's expectation that the distribution of function words may be a 
general signifier of authorship has been thrown into doubt by Damerau (1975), who found a great disparity in the 
use of function words in samples of Vanity Fair and three American novels. Thus a particular word list worked well 
for the Federalist papers, but the same list cannot necessarily be used for other authorship studies.

2.6.2 Biological analogy and the Federalist papers: recent developments

Tweedie, Singh and Holmes (1994) show that statistical methods of authorship attribution can be used in 
conjunction with a neural network to provide an effective classification tool. Previous studies of the Federalist 
papers had used function words, and in their preliminary experiments Tweedie, Singh and Holmes also chose 
common words on the basis of their ability to discriminate between the work of Hamilton and Madison. These 
words were an, any, can, do, every, from, his, may, on, there and upon. The number of occurrences per thousand 
words of each of these words was found using the Oxford Concordance Program, described in Chapter 4, Section 
2.4.2. These values were converted to z scores as described in Chapter 1, Section 2.4, so that each word had a rate 
that was normally distributed with a mean of 0 and a variance of 1. This ensures that each word contributes equally 
to the neural network training process.

Neural networks simulate the way neurons interact in the human body. Each neuron has a body, and receives stimuli 
from other neurons or the environment. The human neuron is either at rest or firing. It fires whenever the sum of the 
stimuli it receives exceeds a certain threshold, and when it fires, other neurons are stimulated or an action such as a 
movement is taken. Tweedie, Singh and Holmes used an array of computer-simulated neurons called a multilayer 
perceptron, which consisted of a so-called input layer of 11 neurons, each of which was stimulated to a degree which 
depended on the occurrence of one of the 11 marker words in a given text. These neurons were connected to a 
middle or 'hidden' layer of three neurons, and these in turn were connected to an 'output' layer of two neurons. One 
of these would fire if the network thought the text was written by Hamilton, and the other would fire if the network 
thought the text was written by Madison. The number of neurons in the input and output layer are clearly related to 
the number of possibilities within the task at hand, but there are no hard and fast rules for deciding on the most 
effective number of neurons in the hidden layer. A small part of this neural network is given in Figure 5.2, where the 
two input neurons which respond to the occurrence of there and on are shown, connected to one of the hidden layer 
neurons which in turn stimulates the two outer layer neurons.

These artificial neurons differ from human neurons in at least three important respects:
  
< previous page page_212 next page >
 

If you like this book, buy it!

http://www.amazon.com/o/asin/0748610324/ref=nosim/duf-20


< previous page page_213 next page >
Page 213

Figure 5.2 
A section of the Federalist neural network

1. In the artificial network, the degree of stimulation afforded by one neuron to another to which it is connected 
depends on a weight which is continually updated during the training phase.

2. The weights in Figure 5.2 are labelled w1 to w4. The human neuron is always in one of two states. It either fires if 
the sum of its inputs are greater than a certain threshold, or remains inactive if the sum of its inputs is below that 
threshold. In this artificial network, however, the neuron becomes active to an extent which gradually increases as 
the sum of its inputs increases.

3.The human neuron normally has only one output channel or 'axon', but the artificial neurons can stimulate any 
number of other neurons.

Taking (1) and (2) into account, the degree of stimulation produced by an artificial neuron depends on the strength 
of both its inputs and its weight. The Federalist network was trained by a process called the conjugate gradient 
method. Starting with random weights, the network was fed data pertaining to the occurrence of the marker words in 
a text of known authorship, and the network would select either Hamilton or Madison as the most probable author. 
According to whether the network was correct or not, the weights were adjusted, then the network was given the 
marker-word data from another text. This process continued until the network had been 'shown' 100 documents. The 
weights were then frozen, and the testing phase began. The 12 disputed papers were presented to the network in turn, 
and in each case they were classified as being by Madison.

Holmes and Forsyth (1995) also studied the Federalist papers, using genetic algorithms which, like neural networks, 
are inspired by biology. Within the genetic algorithm, a set of rules, in this case a set of discriminants for 
distinguishing the work of different authors, is likened to a set of biological genes. The system starts with a random 
set of rules. During the training phase of the algorithm, the system attempts to determine the authorship of the non-
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disputed papers. The rule sets which lead to successful discrimination of texts are allowed to survive, while those 
producing incorrect decisions are allowed to die out. The surviving rule sets 'breed' by producing 'children', which 
take some genetic material (rules) from each parent to form new rule sets, and the process begins again. Spontaneous 
mutations of rules are also permitted. Finally, by a process allied to 'survival of the fittest', an optimal set of rules 
will emerge. Holmes and Forsyth's initial set of rules were based upon the frequencies of 30 function words, but the 
training phase of the algorithm pruned this number down to eight. In the testing phase, this reduced set of 
discriminant rules correctly classified all 12 disputed papers as being written by Madison.

2.7 Kenny's work on the Aristotelean Ethics

Three books now thought to have been written by Aristotle appear in both the Nicomachean Ethics and the 
Eudemian Ethics. A problem of interest is therefore to decide to which set these books most properly belong. Kenny 
(1977) used various techniques, many based on Ellegård's methods, to tackle this problem. Using word-frequency 
counts, Kenny showed that the disputed books were much closer to the Eudemian Ethics. Using a list of 36 common 
words, in 34 cases no significant difference was found between the disputed books and the Eudemian Ethics, while 
for 20 out of the 36 words, significant differences were found between their usage in the disputed texts and their 
usage in the Nicomachian Ethics. Similar results were obtained from the examination of prepositions and adverbs. A 
number of adverbs in particular occur much more frequently in the Nicomachean Ethics than in the Eudemian Ethics 
or the disputed books. In a later experiment, Kenny (1988) divided the disputed books into samples of about 1000 
words each. Groups of common words were found which had a tendency to occur more frequently in either the 
Nicomachean or Eudemian ethics. Using the method of Ellegård, a distinctiveness ratio (frequency in the 
Nicomachean texts divided by frequency in the Eudemian texts) was calculated for each group of words. In every 
case, the 1000-word samples from the disputed text more closely resembled the Eudemian than the Nicomachean 
texts (Hockey 1980).

2.8 A stylometric analysis of Mormon scripture

Holmes (1992) determined Yule's K characteristic and other measures of vocabulary richness for 17 samples of 
Mormon scripture, three samples taken from the Old Testament book of Isaiah and three samples of Joseph Smith's 
personal writings. The K values were converted into a similarity matrix using the following formula for each pair of 
text samples:
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where  is the similarity between text samples r and s,  and  are the K characteristics for samples r and s, 
and the range is the difference between the highest and the lowest K values found in the entire set of text samples. A 
dendrogram was produced from the similarity matrix using single linkage clustering. The results suggested that the 
Isaiah and Joseph Smith samples were relatively distinct from the samples of Mormon scripture, but the writings of 
different Mormon prophets were not clearly differentiated from each other.

2.9 Studies of Swift and his contemporaries

In an experiment performed by Milic (1966), seven samples of the work of Swift were taken, each sample being 
3500 words long. A set of other authors were studied for comparison (Addison, Gibbon, Johnson and Macaulay), 
with two samples being taken from each. This corpus was part-of-speech tagged and Swift was found to be constant 
in his use of parts of speech, compared with the other authors. Both Macaulay and Gibbon made more use of nouns 
and prepositions than Swift.

More clear-cut results were obtained when sequential patterns of three-word classes (trigrams) were used. Initially it 
was found that the same trigrams occurred most commonly in all five writers to almost the same degree. The 
sequence (preposition determiner noun) was most common for all five writers. Thus, neither the most common 
trigram of parts of speech or its relative occurrence can be used as discriminator between the writers. The next factor 
to be examined was the total number of different part-of-speech trigrams found in each sample. These totals were 
found to be highly individual, with the highest values being found for the samples of Swift (which were consistent 
with each other) and thus could potentially serve as a differentiating criterion. This value was called the D value. 
Another criterion examined was the percentage of occasions on which each part of speech was assigned to the first 
word of a sentence. Swift was often found to use connectives at the beginning of sentences: He also used 
significantly fewer pronouns and conjunctions. Almost all the control authors used more initial determiners than 
Swift.

At the time Milic was writing, A Letter of Advice to a Young Poet was the only major work in the Swift canon to be 
in doubt. This letter was divided into three samples, and compared with the other Swift samples and the controls 
according to word-class frequency distributions. The letter samples were more consistent both with each other and 
the mean Swift values than they were with the controls. Since it is not known who else may have written the letter, 
we may infer that it is likely that Swift was the author.

In summary, the three tests found by Milic to be the most reliable discriminators between Swift and other authors 
were high scores for the use of verbals (VB, infinitives, participles and gerunds), introductory connectives (IC, 
coordinating and subordinating conjunctions, and conjunctive adverbs) and different three-word patterns (D, 
trigrams of parts of speech).
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Köster (1971), like Milic, was interested in the work of Swift and other authors who worked to produce propaganda 
for the Tory party. One example of their publications was The Story of the St Albans Ghost (SAG). In an experiment 
to determine the authorship of this piece, known works by Swift, Arbuthnot and Wagstaffe were given part-of-
speech tags according to a scheme slightly different from that of Milic. Köster also tried to use Milic's discriminators 
on both the known author and the disputed texts. The results obtained by both Milic and Köster are given in Table 
5.7. The part-of-speech frequency distribution and the D score for SAG were consistent with Swift's writing, but 
SAG produced lower scores than Swift for both verbals and introductory connectives. Thus, Köster concluded, SAG 
was probably not written by Swift.

Other possible authors of SAG who have been suggested are Swirl in collaboration with Arbuthnot or Wagstaffe. No 
samples of work known to be written by both Swift and Arbuthnot were available, but three works by Arbuthnot 
alone (The Art of Political Lying (APL), the John Bull pamphlets (JB) and A Sermon Preached at the Mercat Cross 
of Edinburgh (SMC)) were used. These samples showed great variability within Arbuthnot's writing  between 14.9 
per cent (higher than Milic's control samples) and 29.7 per cent (within the Swift range) for introductory connectives 
and from 13.4 per cent to 16.2 per cent for finite verbs. In fact, Köster found no grammatical feature in which 
Arbuthnot was both consistent in himself and clearly differentiated from Swift.

The signed works by Wagstaffe used in the study were A Letter to Dr Freind, Shewing the Danger and Uncertainty 
of Inocculating the Small Pox (two sections, LFl and LF2) and the preface to Anthropologia Nova (ANP). The 
samples of 'pseudo-Wagstaffe', being words probably by Wagstaffe though not signed by him, were items from the 
so-called Miscellaneous Works of Dr Wagstaffe, whose authorship is in doubt, namely A Comment upon the History 
of Tom Thumb (CTT), The State and Condition of our Taxes (SCT), and Testimonies of the Citizens of Fickleborough 
(TCF).

The results for Wagstaffe show consistent scores for verbals (VB), lower than those for Arbuthnot or Swift, and high 
scores for introductory connectives (IC), some similar to Swift and some higher. Wagstaffe's results for different (D) 
patterns or part of speech trigrams were less consistent than those for either Swift or Arbuthnot. The results for 
pseudo-Wagstaffe were highly irregular, with different results for each of the three samples.

The last author to be considered was the outside control. A sample of Memoirs of Europe (ME) by Mrs Manley (who 
wrote in the Tory in-house style of the period, but is not associated with The Story of the St Albans Ghost) was 
examined. The discriminant patterns of ME were closest to those of the John Bull sample. The results for each text 
sample discussed in this section for Milic's 'three discriminator profile' are shown in Table 5.7. In this table, GULL 
denotes a sample taken from Gulliver's Travels. Overall, Köster's results appear inconclusive.

The three discriminants of Milic resemble the types of quantitative features chosen by Biber (1995) to distinguish 
genres of text. There are thus similarities
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VB IC D

Controls

Highest score 3.7 17.8 769

Lowest score 1.6 3.8 440

Mean 2.6 11.6 652

Swift

Highest score 4.4 41.8 868

Lowest score 3.5 24.0 768

GULL1 3.5 24.0 789

GULL2 3.8 26.1 768

EX2 4.2 41.3 844

Mean 4.1 33.1 833

a) Results of Milic

Swift

EX2 3.87 41.4 844

Arbuthnot

APL 3.94 14.9 795

JB 3.75 22.3 780

SMC 3.52 29.7 840

Mean 3.74 22.3 805

Wagstaffe

LF1 2.54 38.3 827



LF2 2.56 42.5 861

ANP 2.64 44.1 740

Mean 2.58 41.6 809

Pseudo-Wagstaffe

CCT 2.95 22.1 794

SCT 2.89 30.5 737

TCF 3.60 45.6 756

Mean 3.15 32.7 762

Mrs Manley

ME 4.03 21.8 863

Unknown

SAG 2.50 6.9 823

b) Results of Köster

Table 5.7 
Results for text samples by Swift and three contemporaries according to Milic's three 
discriminator profile
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between the techniques used to distinguish text genres and those used to distinguish authorship styles. In their 
experiments, Baayen, van Halteren and Tweedie (1996) found that observable differences in text register tend to 
swamp those which arise due to differences in authorship (McEnery and Oakes 1997).

2.10 Was And Quiet Flaws the Don written by Mikhail Sholokhov?

Kjetsaa (1976) and colleagues worked on the problem of whether the novel And Quiet Flows the Don was an 
original work of Mikhail Sholokhov or whether it had been plagarised from works by Fyodor Kryukov. In their 
initial study, six samples each of 500 random sentences were used, two each taken from novels known to be by 
Sholokhov and Kryukov respectively, and two taken from sections of And Quiet Flows the Don. Using a single 
value for average sentence length did not differentiate between the texts, but a comparison of the whole spectrum of 
sentence lengths expressed as a percentage of the total number of sentences showed that the values for Sholokhov 
and And Quiet Flows the Don coincided, while the values obtained for Kryukov remained distinct. When using the 
chi-square test to compare the relative usage of six parts of speech, it was possible to reject the hypothesis that 
Kryukov and And Quiet Flows the Don were taken from the same population, while this conclusion could not be 
reached for Sholokhov and And Quiet Flows the Don. They then used the position of a part of speech in a sentence 
as a potential discriminating criterion, since earlier studies in Russian had shown that the first two and last three 
positions in a sentence produced good results for this purpose. In general, since inflected languages such as Russian 
have a relatively free word order, tests based on word position are good discriminators of style. They also examined 
part-of-speech bigrams at the start of the sentence, and trigrams at the end of sentences. In each case, the style of 
Sholokhov closely matched that found in And Quiet Flows the Don, while the style of Kryukov was found to differ 
(Oakman 1980).

2.11 The authenticity of the Baligant episode in the Chanson de Roland

The Chanson de Roland is an 11th-century epic poem, of which versions survive in French, Latin and Norse. One 
section of the work is the Baligant episode concerning a battle between Charlemagne and Baligant. Allen's (1974) 
work in computational stylistics helped determine if the Baligant episode is stylistically consistent with the rest of 
the poem, and therefore probably part of the original poem, or whether it was a later addition by another author or 
authors.

Since spelling was not consistent in the version of the poem that Allen was working with, each word was replaced 
by its lemma. Each lemma was also classified according to one of 45 grammatical categories, so that in most cases 
homographs would be differently encoded. If more than one sense of a word fell into the same grammatical 
category, a digit was appended to the end of the
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word to indicate word sense. The use of lemmas meant that word-length information was lost, so word length could 
no longer be used as a discriminator of style. The test that was successfully used on the lemmatised text was one of 
vocabulary distribution. The text was divided into four roughly equal parts for comparison. Three sections were 
labelled x, y and z, and the fourth section was the Baligant episode. Since only high-frequency function words were 
to be used in this comparison, only those 16 words which made up 1 per cent or more of the text sample in two or 
more of the sections were retained. The most frequent lemma was the definite article li which, in its various 
grammatical and contractional forms, accounted for 5.5 per cent of the words in section x, 6.1 per cent of those in y, 
5.8 per cent in z, and 7.2 per cent of the words in the Baligant episode. The following criterion was used to 
determine whether any of those values differed significantly from the others: if the greatest percentage difference 
between any three sections was less than the smallest difference between those sections and the remaining one, that 
word was considered to discriminate significantly. Using this criterion, li occurs significantly more often in the 
Baligant episode than in sections x, y and z. No significant difference was found in the usage of the second most 
frequent lemma, e, meaning and. Altogether, of the sixteen original lemmas used as potential discriminants, six did 
not vary significantly between the samples; six were used either significantly more or significantly less frequently in 
the Baligant episode; two distinguished section y and one distinguished section z. The probability that any one of 
four sections will be chosen in six out of nine cases is 0.01, which is regarded as being significant. These results 
show that the Baligant episode is stylistically distinct from the other sections, and thus may have been composed by 
another poet.

2.12 The chronology of Isocrates

Closely related to the problem of disputed authorship is the problem of chronology for a single author. 
Chronological studies, such as that of Michaelson and Morton (1976), aim to find which of an author's works were 
written at which stage in that author's career. Isocrates was chosen for this study of chronology, since he produced a 
number of literary works on various subjects over a period of 65 years. The historical background is sufficiently well 
known so that his works may be accurately dated. The object of the study was to find a general solution concerning 
what aspects of Greek prose style might be used to distinguish the work of a single author at various points in his 
career.

Michaelson and Morton found that the range of vocabulary used in the early part of Isocrates' sentences was 
restricted, while a greater choice of words was found in the latter part of the sentences. This data is summarised in 
Table 5.8.

They examined the occurrence of function words in the early part of sentences in their search for chronological 
discriminators. Their most significant
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Position in sentence Number of different words in position

1 768

2 405

3 1037

4 1437

5 1600

Table 5.8 
The positional distribution of the vocabulary in the orations of Isocrates

 

results are shown in Table 5.9, where Y is the year of publication of the oration, counting back from 339 BC; S is the 
number of sentences in that oration; K1 denotes a sentence with kai (and) as its first word; G2 and G3 denote 
sentences with gar (for, conjunction) as their second or third word; and M2 denotes a sentence with men (on the one 
hand) as the second word. Other features examined but not included in the table were sentences with de (on the other 
hand) as the second word, sentences with alla (but) as the first word and the occurrence of three forms of the negative 
particle.

Y S K1 G2 G3 M2

66 45 5 10 2 2

65 57 3 12 5 9

64 154 18 16 7 12

59 98 11 21 3 8

56 128 17 25 8 13

55 155 20 21 5 16

52 46 6 11 4 5

50 106 11 27 5 13

42 360 33 95 22 39

36 138 9 26 11 24

34 126 13 34 9 11



32 129 14 32 14 19

31 158 8 31 8 19

30 173 17 34 16 32

28 224 12 46 15 26

17 182 16 56 12 19

17 289 15 72 22 34

16 654 41 150 41 87

8 321 18 86 12 25

1 475 22 99 37 71

Table 5.9 
Occurrence of key function words in early positions in the sentences of Isocrates' orations
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Michaelson and Morton made a regression analysis of the rate of occurrence of the key function words against the 
date of composition. From this analysis, four characteristics were found which vary linearly to a significant extent 
with the year of authorship. The four characteristics were: average occurrence of kai per sentence, proportion of 
occurrences of kai in which it is the first word of the sentence, proportion of occurrences of gar in which it is the 
second or third word of the sentence and proportion of occurrences of men in which it is the second word of the 
sentence. The correlation coefficient of these variables when plotted against time, together with the formula of the 
straight line which most closely fits the points on the graph of characteristic score against year of publication, are 
shown in Table 5.10.

Characteristic Correlation coefficient Estimated year of 
publication

Kai per sentence + 0.70 0.82x + 88.8

Kai as first word + 0.78 1.33x + 27.4

Gar as 2nd or 3rd word - 0.47 0.001x + 2.8

Men as 2nd word - 0.53 0.06x + 12.2

Table 5.10 
Correlation coefficients and regression equations for four characteristics which show 
chronological change

 

In each case there are 18 degrees of freedom and for this the correlation coefficient is 0.44 for p=0.05 and 0.59 for 
p=0.01. The degree of variation for gar and men is too slight to be of practical value, but Michaelson and Morton 
estimate that the regression equations for kai may be used to give time estimates accurate to plus or minus four years.

2.13 Studies of Shakespeare and his contemporaries

The main difficulty with using stylistic criteria to distinguish between authors in dramatic texts is due to the 
following contradiction: on the one hand, a good author is likely to have a very distinctive style, while on the other 
hand, a good author will also exhibit a variety of styles in the range of spoken parts.

Baillie (1974) was interested in examining the possibility that Henry VIII, normally attributed to Shakespeare, was 
largely written by Fletcher, a view held by many scholars. In a pilot study, two texts known to be written by 
Shakespeare (Cymbeline and A Winter's Tale) and two plays known to have been written by Fletcher (The Woman's 
Prize and Valentinian) were used as comparison texts with ten 500-word samples being taken from each text. Using 
the EYEBALL program, no fewer than 65 potential stylistic discriminators were examined. Although no single 
discriminator was sufficient to distinguish between the two authors, it was found that when certain pairs of variables 
were examined simultaneously the power of discrimination was greatly increased.
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Figure 5.3 
A linear function to discriminate between the works of 

Shakespeare and Fletcher

For example, it was possible to plot all 40 samples on a graph where the horizontal axis was the percentage of 
complements and the vertical axis was the percentage of function-word modifiers. This graph is reproduced in 
Figure 5.3.

A diagonal boundary line separated two regions of the graph: the high function-word/low complements region 
which consisted mainly of samples by Shakespeare, and the low function-word/high complements region which 
contained most of the samples by Fletcher. In this, 34 out of the 40 samples were correctly discriminated, a 
proportion that could be obtained by chance
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Figure 5.4 
Variation of Yardi's discriminant function with the date of production 

of Shakespeare's plays

only one time in a thousand. A similar graph where the axes were the percentage of noun modifiers and the ratio of 
co-ordinators to subordinators correctly classified 32 out of the 40 samples.

Williams (1970) describes how, in 1946, Yardi produced his discriminant function to determine the chronology of 
Shakespeare's plays. This combined into a single value the number of 'full split lines', the number of lines with 
'redundant final syllables' and the number of 'unsplit lines with pauses', all in relation to the total number of speech 
lines. The final value of his function is the weighted sum of all these factors. These values represent the tendency to 
break away from formal rhythm as Shakespeare grew older. Yardi divided 30 of the plays, for which the date of 
production was moderately certain, into 21 successive groups of approximately one year. From these he calculated a 
regression line for the change in his function with time. He found an approximate straight-line relation given by u = 
0.7204 + 0.07645v where 0.7204 is the approximate function for the earliest plays, to which must be added 0.07645 
for each year later in Shakespeare's development. The variation of Yardi's discriminant function with the date of 
production of Shakespeare's plays is shown in Figure 5.4.

If u, the discriminant function of a particular play, is known, an estimate of v can be found from the formula, 
indicating the approximate date of production in years after the earliest of Shakespeare's plays. Yardi used this 
method to suggest approximate dates of writing or production for several plays for which there was little external 
evidence for these. Thisted and Efron (1987) describe how a newly discovered poem was attributed to Shakespeare.

2.14 Comparison of Kierkegaard's Pseudonyms

In previous sections we discussed the problem of a single author writing in different styles over a period of time. In 
this section we will examine the related problem of the same author writing in different circumstances. For example, 
Kierkegaard used different pseudonyms for works which, viewed individually,
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present alternative points of view. The work produced under each pseudonym is internally consistent with its own 
distinctive point of view. McKinnon and Webster (1971) describe a method which has served to establish a 
hierarchy among eight of Kierkegaard's most important pseudonyms. Kierkegaard himself pointed out that that there 
were contradictions between the views expressed by different pseudonyms - contradictory quotations can be found 
among them. McKinnon and Webster's task was to produce a method to determine which of Kierkegaard's 
pseudonyms are closest to his attributed work.

Altogether, 16 sections of text were used for this study, with eight sections of acknowledged work and eight sections 
of pseudonymous work. Three vocabulary lists were produced for each sample of text: total vocabulary, vocabulary 
exclusive to that section and the vocabulary in each of the pseudonymous sections shared exclusively with the 
acknowledged sections. The experimental procedure consisted of two stages:

la. a comparison of the text densities (related to the type-token ratio) of the pseudonymous (PS) and acknowledged 
(SK) samples

lb. a comparison of their internal coherence or homogeneity by the vocabulary connectivity method

2. a pair vocabulary test, the purpose of which was to establish a hierarchy of the synonyms in relation to the 
acknowledged Kierkegaard.

The purpose of the first two tests was to show whether PS differs significantly from SK.

V was used to denote the total vocabulary size, and N the total number of words in the sample (including repetitions).
Test la used the measure logV/logN, since it had been found empirically that vocabulary size grew with text length 
according to a bilogarithmic relationship. This ratio was 0.819 for SK and 0.845 for PS, showing PS has the richer 
vocabulary. This supported the hypothesis that PS is significantly different to SK.

The same result was obtained for the vocabulary connectivity method. This involved a comparison between 
observed vocabulary exclusive to a given section (O) and the calculated values for a chance distribution taking into 
account text length and rank frequency distribution of each selection (C). McKinnon and Webster do not give details 
of the formula used for these calculations. O tended to be greater than C for PS, and took a greater variety of values, 
while O was approximately equal to C for SK. This shows that SK was much more homogeneous than PS, and PS 
had a richer vocabulary. The various pseudonyms were ranked by the O/C ratio. The closest to the acknowledged 
works was Sickness Unto Death, by 'Anti-Climacus', while the furthest was Repetition by 'Constantine Constantius'.

2.15 Dogmatic and Tentative Alternatives

Another example of variation within the work of a single author is in the use of
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dogmatic and tentative alternatives, as found by Ertel. Examples of dogmatic words are always, whenever, never, 
and absolutely, while examples of tentative expressions are often, sometimes, occasionally and up to a point. It was 
possible to define a dogmatism quotient which varies between authors, being, for example, high in Marx but low in 
Russell. A dogmatism quotient can also vary within the same author at different periods in time. For example, 
Hitler's speeches were more dogmatic in times of crisis, and less so in times of victory (Kenny 1982).

2.16 Leighton's Study of 17th-century German Sonnets

Leighton (1971), in a study of 17th-century German sonnets, attempted to produce a type of literary geography, 
where different towns might be distinguished by the style of sonnets produced there. A manual coding system was 
used to indicate the stylistic features of interest in each line, where the following codes were used: main clause, 
interrupted main clause, completion of main clause, elliptical main clause and extension phrase in apposition. 
Question marks, apostrophes, end of line and end of sentence were also encoded. Once this coding had been 
completed, various computer analyses were possible, such as the average number of main clauses per poem, average 
number of sentences per poem, and the commonest code patterns for each poet.

Leighton used an analysis which distinguished between main and subordinate clauses. Code b was used for an 
interrupted main clause, while i was used for a subordinate clause. For example, line 1 of the poem Lambs that learn 
to walk in snow by Philip Larkin would be encoded bi, with the phrase that learn to walk in snow being counted as a 
subordinate clause. The material chosen for the initial experiments consisted of 20 religious sonnets by Fleming and 
Gryphius's 31 so-called Lissa sonnets. It was shown that each poet had preferred line patterns, as shown in Table 
5.11.

Fleming Gryphius

Main clauses per sentence 1.65 2.62

Sub clauses per sentence 0.88 3.57

Main clauses per poem 13.45 7.25

Sub clauses per poem 7.20 9.90

Sentences per poem 8.15 2.77

Coincidences 6.15 2.70

Enjambements 1.95 2.80

Apostrophes 2.40 1.10

Extension phrases 2.40 1.93

Percentage of octet divisions 80.00 32.26

Table 5.11 
Mean frequencies of standard features in sonnets by Fleming and Gryphius
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The second stage of the experiment was to produce a program to provide for any given group of sonnets a ranked 
frequency list of line patterns. The most important line pattern frequencies were as (main clause, end of line and 
sentence) for Fleming and ir (subordinate clause, end of line) for Gryphius. The range of different line patterns used 
was greater for Fleming, who used 151 line patterns in 20 sonnets as compared with Gryphius who used only 128 in 
31 sonnets.

2.17 Forensic Stylometry

Morton (1978) describes a technique for discriminating between real and fabricated confessions where authentic 
material is provided to represent the accused. This can take one of two forms. Ideally, another statement made by the 
same person will be used, but if evidence of this type cannot be produced, the accused is asked to write an essay on 
any neutral subject such as 'My Schooldays'. It is also vital to know the circumstances in which the author produced 
a text, particularly when determining the authenticity of confessions made in police custody and used as evidence in 
trials. Morton asks, if a confession were made under pressure, would the prisoner have used his own natural style or 
would he assume the language of his captors? Morton achieved fame as an expert witness, showing in court that of a 
set of 11 statements allegedly made to the police by one author, four were written by a different author. The accused 
was subsequently acquitted of charges based on these four statements.

Morton's work has been accepted in British courts, but not in the USA because of such problems as differences 
between letters, diaries and oral confessions by the same person being likely to be greater than differences between 
two different people writing in the same genre. For example, a comparison between statements made before the 
Hearst trial and tape-recorded statements made by members of the Symbionese Liberation Army was not accepted in 
court (Kenny 1982). Other examples of forensic stylometry include determining the authorship of contracts and 
wills, the authorship of anonymous letters in serious crimes and the authenticity of suicide notes. If forensic 
stylometry develops to a sufficient extent, we may encounter the notion of stylistic 'fingerprints' in the future. 
However, to date, more success has been found in determining the constancy of style between texts written by the 
same author than the uniqueness of an individual's writing style (Kenny 1982).

One such controversial method is the cusum technique. This is based on the premise that everyone has a unique set 
of quantifiable linguistic habits, such as the frequent use of very short words or words beginning with a vowel, and 
the occurrence of any particular habit is examined with each cusum test. First, a cusum plot is produced, derived 
from the sentence lengths in the text under scrutiny. The mean sentence length is found, and then the difference 
between
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the actual and expected numbers of words found for each sentence is plotted. For example, if the mean number of 
words per sentence is 10, then the expected number of words in the first three sentences would be 30. If the actual 
number of words in the first three sentences were 5, 7 and 9, the total would be 21. The difference between the 
expected and actual number of words in the first three sentences would be 30 - 21 = 9, and this is the value that 
would be plotted on the cusum chart for sentence number three. The same procedure is used to plot the difference 
between the expected and actual occurrences of the linguistic habit forming the test criterion, up to and including 
each sentence point. If the cusum plots of sentence lengths and habit words follow each other closely, the test 
suggests that the text was written by a single author, while if the two plots diverge greatly, the test suggests that 
more than one author was responsible. If cusum charts reveal that a confession has been written by more than one 
author, this of course suggests that material not in the linguistic style of the author of the original confession has 
been inserted later. Canter (1992) found that the test was not reliable, whether one relied upon a subjective appraisal 
of a visual comparison of the two cusum plots, or attempted to quantify the correlation between the two lines using 
Spearman's rank correlation coefficient. A review of the controversy over the cusum technique, which looks at a 
number of modifications of the basic technique, has been written by Holmes and Tweedie (1995).

2.18 The Use of a Syntactically Annotated Corpus in Stylometry

Baayen, van Halteren and Tweedie (1996) performed experiments in authorship attribution which made use of a 
syntactically annotated corpus. Statistical measures previously applied to words and their frequencies of use were 
applied in a similar manner to syntactic phrase rewrite rules as they appeared in the corpus. In various authorship 
studies, the words which seem to be the best discriminators between the work of different authors are the so-called 
function words such as a, the and that. The use of these words reflects the underlying syntax of the text in which 
they occur. This suggests that a direct study of syntax use might yield results at least as good as those obtained by 
the statistical analysis of word frequencies in terms of their discriminatory potential. Furthermore, there is some 
evidence (such as that found by Baayen, van Halteren and Tweedie in the pilot study described here) that the 
frequencies of rewrite rules are less subject to variations within the text than are word frequencies.

In a pilot study, the authors found the 50 most frequent words in the Nijmegen corpus 1 as a whole. These texts were 
given sets of scores using the technique of principal components analysis described in Chapter 3, Section 2.1. The 
first three components extracted accounted for 52 per cent of the variance, and the scores obtained by each text on 
these three components were displayed on three scatter plots, as described by Horvath in Chapter 3, Section 2.5. The
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scatter plot for principal components 1 and 2 visually grouped together texts from similar genres: one cluster 
corresponded to drama, one to crime fiction and one to scientific texts. However, the scatter plots for principal 
component 3 (which provided just 9 per cent of the variance between texts) revealed author-specific differences 
between texts of a single genre. This suggested that genre differences are somewhat greater than author differences.

Baayen, van Halteren and Tweedie used two texts of the same register (crime fiction) taken from the Nijmegen 
corpus. These texts were chosen so that no effects of difference in register would cloud the effects of different 
authorship, and the texts were also syntactically annotated with the TOSCA system. For the actual experiments, they 
used only the crime fiction novels of Allingham and Innes, taking a sample of 20,000 words from each author. Both 
samples had been syntactically annotated with the TOSCA annotation scheme, which consists of

the syntactic category, i.e. the general nature of the constituent itself,

the syntactic function, the role the constituent plays within a larger constituent, and

additional attributes of interest such as 'singular'.

For example, the sentence He walks his dog in the park is annotated by a single tree structure, where the leaves 
correspond to single words, which are grouped under other labels corresponding to successively longer phrases. 
Within that tree, the noun park is given the syntactic category N. Its syntactic function, namely the head of the noun 
phrase the park, is denoted NPHD. The other attributes of interest are labelled com (common) and sing (singular). 
The labels for the individual words the and park are combined under the label PC, NP, which shows that the park is 
a noun phrase which functions as a prepositional complement. This tree structure can be represented by rewrite 
rules, where, for example, the park would be represented by the rewrite rule , where 
DT:DTP denotes that the is a determiner phrase which functions as a determiner. After counting the total number of 
rewrite rules needed to describe each text and the degree of repetition of each rule, it was found that the resulting 
type-token ratio was similar to that expected for the words, about 4000. The frequency of each rewrite rule was then 
found for both samples of text.

Baayen, van Halteren and Tweedie examined five different measures of vocabulary richness, normally used for 
evaluating texts on the basis of the word frequencies they contain. One of these measures was Yule's characteristic 
K, described in Section 2.3. The other measures were as follows:

Simpson's D, given by the formula

where N is the number of tokens,  the number of types which occur i times in a sample of N tokens, and v 
the highest frequency of occurrence.
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Honoré's measure gives more weight to the low-frequency end of the distribution, including the hapax legomena, 
denoted 

Sichel's measure also takes into account the low-frequency words:

Brunet's measure of vocabulary richness is given by the formula

where a is a constant. If a is set to 0.17, W will be relatively independent of N.

The crime fiction texts were divided into 20 samples, 14 labelled with the author's name (7 each by two different 
authors), and six test samples, where the identity of the author was kept secret from the experimenters. Using the 
frequencies of the 50 most frequent words in the pooled set of all the samples, values for the five measures of 
vocabulary richness were obtained for each of the 20 text samples in the experiment. Thus, 20 observations were 
made for each of the five measures. These results were input to a principal components analysis, which combined W 
and R in the first principal component, and combined K and D in the second. Each of the 20 texts was given scores 
on both of these principal components, enabling them to be viewed on a scatter plot. This showed that when word 
frequencies were used as the basis of the discrimination test, only four out of' six of the test samples were classified 
correctly.

A similar experiment was then performed to find out whether the 50 most frequent rewrite rules provided a better 
basis for author discrimination than the 50 most frequent words. This time the vocabulary richness measures were 
used on the frequencies of the 50 most frequent rewrite rules, and the resulting data input into a principal 
components analysis. This resulted in all six test samples being correctly clustered with samples known to be by the 
same author. Similarly encouraging results were obtained when the discriminatory potential of the lowest-frequency 
rewrite rules (especially the hapax legomena) were examined. Baayen, van Halteren and Tweedie concluded that the 
frequencies with which syntactic rewrite rules are put to use provide a better clue to authorship than word usage.

The fact that differences in genre were found to be easier to identify than differences in authorship helps to explain 
the success of Biber (1995) in his work on differentiating texts on the basis of genre or register.
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3 Studies of Linguistic Relationship

3.1 Ellegård's Method for the Statistical Measurement of Linguistic Relationship

Ellegård (1959) invites us to assume that there once was a language L consisting of just 20 roots. This language gave 
rise to four daughter languages, called A, B, C and D. Languages A and B are closely related, while C and D are 
remote from both A and B and also from each other. We can say this because A and B have many roots in common, 
while C and D have few roots in common. All four languages have lost some of the roots originally present in L. It 
must be assumed that the vocabulary list for language L is no longer known. This means that in order to estimate 
which roots were once in L, one can assume that any root surviving in more than one modern language must have 
been present in L. If this assumption is made, we can use roots 1-13 of the original 20, as shown in Table 5.12.

Root L A B C D

1 + + + - -

2 + + + - -

3 + + - - +

4 + - + + +

5 + + + - -

6 + + - - +

7 + + + - -

8 + - + + -

9 + + + - -

10 + + + - +

11 + - + + -

12 + - - + +

13 + - - + +

14 + - - - +

15 + - - - +

16 + - - + -



17 + - + - -

18 + - - - +

19 + - - - -

20 + + - - -

Table 5.12 
Occurrence (+) and loss (-) of 20 L-roots in the daughter languages A, B, C and D

 

To estimate the closeness between any two of the modern languages such as A and B, we first construct a 
contingency table where a is the number of times the original root occurs in both A and B (6), b is the number of 
times the
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original root is found in A but not in B (2), c is the number of times the original root is found in B but not in A (3) 
and d is the number of times the original root is found in neither of the daughter languages (2). The product-moment 
correlation coefficient (r) can then be measured according to the following formula:

which, in the case of A and B,

r varies in the range -1 (for a pair of languages which are not related at all) to + 1 (for a pair of languages which 
have all roots in common).

If the roots of the original language L are still known, all 20 rows of Table 5.12 may be used to calculate the 
correlation coefficient between each pair of languages. A comparison of , the correlation for the sample of 13 
roots with , the 'true' correlation for the whole population of 20 L-roots, is given in columns (a) and (b) of Table 
5.13.

Pair (a) (b) (c) (d) 

AB 0.16 0.30 0.71 0.62

AC -1.00 -0.59 0.00 0.00

AD -0.22 -0.21 0.43 0.33

BC -0.16 0.00 0.45 0.39

BD -0.72 -0.50 0.27 0.21

CD 0.22 0.07 0.55 0.40

Table 5.13 
Correlation values for a set of four daughter languages of L, calculated according to whether or 
not the roots of L are known, and using two different formulae

 

Columns (a) and (b) show that whereas  places the CD correlation higher than the AB correlation,  places the 
AB correlation higher than the CD correlation. The problem with the , measure is that the correlation coefficient r 
gives equal weight to both negative agreements (--) and positive agreements (+ +). However, a positive agreement 
between two languages is in general a much rarer and more significant event than a negative disagreement. Also, 
when the set of roots in L is not known, there is a danger of either overestimating or underestimating the number of 
negative agreements. A and B agree for most roots, and all their positive agreements will be included in the sample, 
while most of the negative agreements will be left out except in those relatively rare cases where they coincide with 
a positive agreement for C and D. For C and D, many negative agreements will be included, whenever they
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correspond with positive agreements for C and D. Thus, when estimating correlation among daughter languages when the roots of the original 
language are not known, negative agreements should be given less weight than the positive agreements and disagreements. This can be done 
by defining a new correlation coefficient , where only positive agreements appear in the top line of the equation, as shown below:

A value of  near zero shows a lack of relationship, while a value near + 1 implies a close relationship. Values of , (  for the sample of 13 
roots where the roots of L are unknown) and .(  for the full population when the 20 roots are known) are shown in columns (c) and (d) 
respectively of Table 5.13. Both measures give the same rank ordering of closeness of the language pairs.

More closely related pairs of languages have probably separated from each other and from the original language L more recently than less 
close language pairs, which separated from each other and from L much longer ago.  was applied to a comparison of Indo-European 
language subfamilies. These values of , expressed as percentages, are given in Table 5.14.

Celto-Italic Greek Armenian Indo-Iranian Slavo-Baltic Germanic

Greek 67

Armenian 46 49

Indo-lranian 63 64 45

Slavo-Baltic 65 63 43 59

Germanic 71 63 44 62 71

Albanian 40 44 36 41 37 38

Table 5.14 
Modified correlation coefficients, expressed as percentages, for seven Indo-European subfamilies

 

Thus, Albanian and Armenian are most distinct from each other and from all the other language groups, while Germanic, Slavo-Baltic and 
Celto-Italic have the greatest number of roots in common.

3.2 Language Divergence and Estimated Word Retention Rate

Dyen, James and Cole (1967) obtained estimates of language divergence and word retention from determinations of the number of cognate 
words found in pairs of Austronesian languages. For example, the meaning five is expressed as lima in Malay and lima in Tagalog, so we have 
found a pair of cognate words. Six is enam in Malay and anim in Tagalog, so this pair is also probably cognate, being derived from a common 
root. However, seven is tujuh in Malay and pitu in
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Tagalog, so this word pair is not cognate. Altogether, they considered 196 different meanings in the 89 languages 
listed by Dyen in his 1962 study. These 196 meanings were taken from a list of 200 prepared by Swadesh (1952) 
from which the meanings freeze, ice, snow and that were excluded.

Different retention rates are found in words of different meanings. This means that the words for such concepts as 
five or mother and father remain constant in a given language for much longer than those describing other concepts, 
and hence are more likely to be cognate with the words for the same concept in a related language. Each meaning in 
Swadesh's test list is assumed to have a time constant  which measures the retention rate of the words which are 
listed for that meaning. Each pair of languages is assumed to have a certain time separation t which is taken to be 
twice the time that has elapsed since they belonged to a common antecedent and were identical. The reciprocal 1/t is 
a direct measure of relationship between languages. We will see later how t and  correspond to physical time in 
years.

Dyen, James and Cole state that cognation in two languages is a random phenomenon with the probability assigned 
by the exponential holding model which is used to describe radioactive decay. Just as the decay of a single 
radioactive atom is a random event, so is the change in a word of a language which means that the word is no longer 
cognate with its counterpart in another language. Using the exponential holding model, the probability that the jth 
pair of languages has a pair of cognate words for the jth meaning is given by the expression

The proportion of cognate pairs found for a given meaning in all language pairs is called the productivity P of that 
meaning. The productivities of certain words in the Swadesh list in Austronesian languages is given in Table 5.15. 
The time constant  is a monotonically increasing function of the percentage cognation. In other words, high 
productivity corresponds to a high constant , low productivity to a low value of .

Rank Meaning P

1 five 80.5

2 two 78.9

3 eye 77.2

4 we 74.7

5 louse 71.2

10 four 55.7

20 name 34.4

50 right (hand) 14.4

100 to count 5.9

196 to play 0.7



Table 5.15 
Productivity percentages of lexicostatistical list meanings

 
  
< previous page page_233 next page >
 

If you like this book, buy it!

http://www.amazon.com/o/asin/0748610324/ref=nosim/duf-20


< previous page page_234 next page >
Page 234

In order to estimate the relationship between the productivity and , meanings were grouped into nine classes of approximately 
equal size on the basis of their productivity over all pairs of the 89 lists. The 22 most productive meanings were grouped into class 
1, the next 22 into class 2 and so on. For each pair in a subsample of 46 language pairs, the proportion of cognates was found in 
each of the nine classes of meanings. As an example, the results for one language pair (Tagalog and Ratagnon) are presented in 
Table 5.16. From the relation

 is called the log log transform of . The additivity of the effects  and  on the log log transforms of the true 
probabilities  suggests that we could obtain estimates of  and  by taking the log log transforms of the observed proportions 

 which approximate . The notation  indicates an estimation of  Another example of this 'circumfiex' notation is found in 
signal processing, where s is the transmitted signal and  is the received signal. At various points across the signal route, noise 
corrupts the waveform s. Since we do not know the extent to which the received signal has become corrupted by noise, it gives us 

only an estimate of the transmitted signal (Sklar 1988).The log log transforms of  given by  are given in Table 
5.16.

Meaning class 1 2 3 4 5 6 7 8 9

% Cognation 90.5 86.3 65.0 63.2 50.0 47.6 52.6 27.3 22.0

log log transform -2.30 -1.92 -0.84 -0.78 -0.37 -0.30 -0.44 -0.26 -0.41

Table 5.16 

Percentages of cognation  and their log log transforms in each productivity class for the list pair Tagalog and Ratagnon
 

1. The total of log log transforms over all meaning classes for Tagalog and Ratagnon is -6.28, with a mean of -0.70.

2. Although there is insufficient space to tabulate the full data set here, the total of log log transforms over all language pairs for 
meaning class 1 was found to be 77.2 with a mean of -1.68.

In the following discussion, the log log transform of  will be denoted . The average of  over the nine classes over which the 

subscript j runs is denoted by . The dot in  indicates the subscript with respect to which we have averaged. The means  and 
, given in Tables 7.17(a) and 7.17(b) respectively, are calculated in the same way as the quantities labelled 1. and 2. just below 

Table 5.16.  is the total of the log log transforms over all meaning
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classes for a given language pair divided by the number of classes (9), while  is the total of the log log transforms 
over all language pairs for a given meaning class, divided by the number of language pairs (46).

If we average  with respect to j and i in turn, we obtain

We can standardise our time measures by defining the unit of t and t to be the time constant of the ninth meaning 

class. Thus, if we set  then . Substituting j = 9 in equation (i), we have:

and substituting in equation (ii) we have

 is given in Column 2 of Table 5.17(a), so we can calculate log,  which goes into Column 3 of Table 5.17(a), 

and  is column 4. From Table 5.17(a) we have . Hence from equation (ii) we have

The values of log  in the third column of Table 5.17(b) are thus obtained from the means  in the second 
column.

The data permits the estimation only of relative times and therefore does not make possible the estimation of  or 
 in years or millennia. In order to estimate the absolute magnitude of the time unit, we need historical data. Dyen, 

James and Cole use the figure given by Lees (1953) of 81 per cent retention for a language during a millennium. 
This means that the average cognation for two languages (p) will be the square, that is, p = (0.81)2.

Meaning class Means ( )

1 -1.68 2.04 7.67

2 -1.18 1.53 4.64

3 -0.74 1.10 3.00

4 -0.54 0.90 2.45

5 -0.17 0.53 1.70

6 -0.16 0.52 1.69



7 -0.05 0.41 1.51

8 0.21 0.14 1.15

9 0.36 0.00 1.00

Grand mean -0.44 0.797

Table 5.17(a) 

Time constants  for each meaning class
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Language pair Means ( )

Dibabaon x Cuyunon 0.11 0.91 2.48

Tongan x Atiu -0.22 0.58 1.79

Tikopia x Kapingamarangi -0.59 0.20 1.22

Samoan x Ellice -0.79 0.01 1.01

Kantilan x Cebuan-Visayan -1.12 -0.33 0.72

Table 5.17(b) 
Time separations for selected language pairs

 

Using the formula , they estimate the time unit of t and  which was defined 
as the average time constant of the ninth class, to be 1069 years, so our time units are roughly millennia. The 
practical use of cognates in multilingual corpus-based computational linguistics has been described by Simard, 
Foster and Isabelle (1992) and McEnery and Oakes (1996).An account of their work is given in Chapter 3, Section 
4.9.3.

4 Decipherment and Translation

4.1 The Decipherment of Linear B

Between 1899 and 1935 the archaeologist Arthur Evans excavated the city of Knossos in Crete. Among his findings 
were a hoard of inscribed tablets, dried but not baked. There were two types of writing on the tablets, Linear A 
which had been found at other locations in Crete, and Linear B which was found only at Knossos. Linear B appeared 
to be more recent than Linear A and, originally, was not considered to be Greek, since the ethnic origin of the 
Cretans was widely believed to be non-Greek (Kahn 1966). Linear B was successfully deciphered using only hand 
and eye. Considering the efficacy of that technique in deciphering an unknown language, it seems at least possible to 
allow a computer to use similar techniques in order to translate languages. We will look at work related to this in 
statistical machine translation in Section 4.3. However, the use of observation and human intuition is still an 
important part of corpus linguistics.

There are some resemblances between an unreadable natural language script and a secret code, and similar methods 
can be employed to break both (Chadwick 1958).The differences are that (a) the code is deliberately designed to 
baffle the investigator, while the script is only puzzling by accident and (b) the language underlying the coded text is 
normally known, while in the case of a script there are three separate possibilities. Firstly, the language may be fully 
or partially known but written in an unknown script. Secondly, as is the case for Etruscan, the script may be known 
but the language unknown. Thirdly, we have the situation which originally faced any would-be decipherer of the 
Linear B script, where both the script and the language were unknown. Although it was later discovered that the 
underlying language was known, that fact could not be
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used when work on decipherment first commenced. The success of any decipherment depends upon the existence 
and availability of adequate material. In cases where both the language and the script are unknown, a bilingual text 
is generally required before decipherment is possible. If as in the case of Linear B, no bilingual text is available, a 
far larger corpus of text is required.

The first step in deciphering an unknown script is to determine whether the writing system used is ideographic, 
syllabic or alphabetic. All known writing systems use one or a combination of these three basic methods. 
Ideographic writing provides a picture or ideogram to denote an entire concept. It requires a huge number of signs to 
cover even a simple vocabulary, and generally gives no guide to pronunciation. Chinese script is an example of 
largely ideographic writing, although some characters are made up of combinations of two or more simpler 
characters, one of which may provide a clue to pronunciation. A single digit such as 5 is an example of an ideogram, 
since it represents a whole concept without containing any of the constituent characters of five. The syllabic and 
alphabetic systems are both made up of elements which combine to represent the sound of a word. A syllabic 
alphabet consists of about 50 characters if the language consists of open syllables (combinations of one consonant 
and one vowel), but more if it contains complex syllables (containing consonant or vowel clusters as in strength) as 
is the case for English. Alphabetic systems generally do not have more than the 32 characters found in Russian. 
Thus, the number of characters in an alphabet gives a strong clue as to whether a writing system is ideographic, 
syllabic or alphabetic. Since 89 characters were originally found in samples of Linear B, it is most probably a 
syllabic script. Another clue is that vertical bars appear between groups of two to eight characters in Linear B, which 
would be expected if these groups corresponded to the number of syllables in a word. These elementary observations 
were disregarded during many early attempts at decipherment. However, the Linear B script also has a number of 
commonly occurring ideograms, consisting of pictures of tripods, and jars or cups, together with metric signs and 
numerals.

Alice Kober (1945) tried to discover whether Linear B was an inflected language which used different word endings 
to express different grammatical forms of a word. In particular, she investigated whether there might be a consistent 
means of denoting a plural form or distinguishing genders. At various points on the Linear B tablets, it is clear that 
summation is taking place, yielding totals of certain objects. Kober showed that the totalling formula had two forms 
according to the ideographs contained within: one was used for men and for one class of animals; the other was used 
for women, another class of animals, and also for swords, giving strong evidence for the distinction of gender. Kober 
also demonstrated that certain words had two variant forms, which were longer than the basic form by one sign. She 
interpreted them as further evidence of inflection; but they were destined to play an even more
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important role in the final decipherment (Chadwick 1958).

After recording all the common suffixes, and assigning each a code number, Kober found several nouns that were 
declined in three cases (Kahn 1966).Two such patterns took the format given in Table 5.18, where J K and L M 
indicate the respective word stems:

Case I J K 2 7 L M 36 7

Case II J K 2 40 L M 36 40

Case HI J K 59 L M 20

Table 5.18 
Declensions in Linear B

 

Since there were some resemblances between Linear B and the known Cypriot syllabary, Kober conjectured that the 
Linear B symbols could represent either lone vowels or a combination of consonant followed by vowel, but no other 
combinations. Assuming that the word stems ended in consonants, which they tend to in most languages, then 2, 59, 
36 and 7 might be 'bridge' signs, consisting of the last consonant of the stem and the first vowel of the ending. If so, 
then the pair 2 and 59 would start with the same consonant, as would the pair 36 and 20. Kober illustrated this 
principle with an Akkadian noun sadanu, whose stem is sad- and whose case endings are -anu, -ani and -u, as 
shown in Table 5.19.

Case I J K 2 7

sa da nu

Case II J K 2 40

sa da ni

Case Ill J K 59

sa du

Table 5.19 
Declensions of the Akkadian noun sadanu

 

Although Kober did not suggest that the example given in Table 5.19 gives the actual values of the Linear B 
symbols, she had shown that some signs shared a common consonant. Using similar reasoning, it could be 
ascertained that symbols 2 and 37 share the same vowel. Since their stems are different, these two symbols probably 
do not commence with the same consonant, but if their case endings correspond, they will terminate with the same 
vowel. Kober thus discovered that some symbols had consonants in common and some had vowels in common. This 
enabled the identification of groups of four related symbols; they could be arranged in a square, with symbols 
containing the same vowel being placed in the same row and symbols sharing the same consonant being placed in 
the same column, as shown in Table 5.20 below:
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Consonant 1 Consonant 2

Vowel 1 2 36

Vowel 2 59 20

Table 5.20 
A group off our related symbols

 

Bennett provided reliable lists of the signs for the first time; previous attempts had confused groups of similar signs. 
This enabled Ventris to compile statistical data such as the overall frequency of each sign, and its frequency in 
initial, final and other positions in the sign groups (see Chadwick 1958). If words are written in a syllabic script 
which has signs for pure vowels (vowels occurring alone and not in conjunction with a consonant), then a pure 
vowel symbol will only be used in the middle of a word if it immediately follows another vowel. The frequencies of 
pure vowel signs will then show a characteristic pattern, where the pure vowels occur rarely in the middle of a word 
but frequently at the beginning, because every word beginning with a vowel must begin with a pure vowel sign. This 
reasoning enabled identification of the symbols denoted by 08 and 38 as plain vowels. The pattern for the other pure 
vowels was less clear because of the occurrence of diphthongs. Ventris deduced that the symbol 78, which 
commonly occurred in the final position, was probably a conjunction meaning and, and a suffix to the word it served 
to connect. The fact that it was not part of the root word but a separable suffix emerged from the comparison of 
similar words, where one variant would be found with symbol 78 at the end, and one would be found without. 
Similarly, separable prefixes could be identified by observing word variants where one began with the prefix symbol 
and one consisted of the unprefixed root word. Further deductions were made possible by certain words which 
appeared in two different spellings. If they were long enough, but differed in only one syllable, and occurred several 
times, then there was a reasonable assumption that they had something in common. They might be variant spellings 
of the same word, meaning that the symbols which differed would represent similar sounds. A table of these was 
eventually produced. Adopting the phonetic pattern of Kober, where the symbols all represented lone vowels or 
combinations of consonant plus vowel, Ventris produced a grid with vowels along the top and consonants down the 
side. The entry in the grid corresponding to consonant Ill and vowel II would be the symbol which stood for the 
combination of these two sounds. Ventris's task was to fill in this grid with the appropriate symbols and identify the 
consonants and vowels corresponding to rows and columns.

In some cases the inflectional variation seemed to be due to a change of gender rather than of case, as could be seen 
from the use of these words with the ideograms for men and women. This enabled the deduction of groups of 
symbols which all contained the same vowel, using the following reasoning: if the masculines all form their 
feminines alike as in Latin (where, for example,
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the masculine form dominus becomes domina in the feminine), then, from the table of similar syllables, links may be 
deduced between symbols containing the same vowel.

Ventris deduced that symbol 08 corresponded to a because of its high initial frequency; this implied that consonant 
VIII was n, because the Cypriot symbol for na is identifiable with symbol 06, and vowel I was probably i, because 
the Cypriot symbol for ti is almost identical with Linear B symbol 37. Chadwick describes how further symbols 
were identified by searching for whole words in the tablets. For example, a name which would be expected to occur 
in texts written at Knossos is that of the nearby harbour town, Amnisos, which is mentioned by Homer. The 
consonant group -mn- will have to be spelled out by inserting an extra vowel, since every consonant must be 
followed by a vowel. It should therefore have the approximate form a-rni-ni-so or 08-?-?-30. Ventris found only one 
suitable candidate word in the tablets. The symbol sequence for ko-no-so, meaning Knossos, was also found, since it 
consisted of three syllables all ending in 0, and was 70-52-12.

Eventually Ventris came to believe that the language underlying Linear B was in fact Greek. The word koriannon, 
which is Greek for coriander was found, but since this may have been a borrowed term, its presence in the tablets is 
not conclusive proof that Linear B is Greek. However, after the identification of harmata, meaning chariots and a-
ra-ru-ja a-ni-ja-phi, meaning fitted with reins, the solution that the words in Linear B were Greek was inescapable. 
Blegen found further evidence that Linear B was Greek, by using Ventris's syllabary to show that the word 
preceding a pictograph of a tripod was ti-ri-po-de and the word preceding a pictograph of a four-handled pot was qe-
to-ro-we where owe corresponded to the Greek word for ear or handle. Similarly, a pot with no handles was a-no-
we, where an means not. Kahn (1966) gives examples of the content of the Linear B tablets, which record relatively 
minor commercial transactions, as Koldos the shepherd holds a lease from the village, 48 litres of wheat, (sic), and 
One pair of wheels bound with bronze, unfit for service. Before the decipherment of Linear B, the oldest known 
example of European writing originated from about 750 BC  the language written in Linear B was some 700 years 
older than this.

4.2 The Hackness Cross Cryptic Inscriptions

The Hackness cross, originally erected in the 8th or 9th century, now consists of two damaged stone fragments 
which have a combined height of about 1.5 metres (Sermon 1996a, b). The fragments are now located in St Peter's 
church at Hackness in North Yorkshire. On the cross are five inscriptions, three in Latin and two cryptic 
inscriptions. The Latin inscriptions read as shown in Table 5.21.

Oedilburga, or Aethelburg, was probably abbess of the monastery at Hackness. One of the cryptic inscriptions is 
written in a form of Ogham, a Celtic alphabet developed in the 4th century. It consists of 27 letters forming a
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OEDI) L (BVR) GA SEMPER TENENT MEMORES COMMV (NITATE) S TVAE TE 
MATER AMANTISSIMA Oedilburga your ommunities hold you always in memory 
most loving mother

TREL (...) OSA ABATISSA OEDILBVRGA ORATE PR (O NOBIS) Trel .. osa 
Abbess Oedilburga pray for us

OEDILBV (RGA) BEATA A (D S) EMPER T(E REC) OLA (NT) Blessed Oedilburga 
always may they remember you

Table 5.21 
The Latin inscriptions on the Hackness cross

 

four-line inscription. In the Celtic Ogham alphabet, a fixed alphabet is divided into groups of five letters. A specific 
type of stroke (such as long vertical line or right sloping line) is used for each group, the letters in each group being 
distinguished by the number of strokes used. The groups are as follows: B L V S N; H D T C Q; M G Ng Z R; A 0 U 
E I; Kh Th P Ph X; EA OI IA UI AE. The alphabet used on the Hackness cross also consists of six groups of five 
letters, as shown in Table 5.22 below.

Group A

Group B

Group C

Group D

Group E

Group F

Table 5.22 
The Hackness cross alphabet, divided into six groups of five letters

 

Of this alphabet of 30 letters only 14 are used in the inscription. In order to decode the inscription, it is necessary to 
know the alphabet on which the Hackness Ogham script is based. Since it consists of 30 letters, we can exclude the 
Greek or Latin alphabets which have too few characters. The alternative options examined were Celtic Ogham and 
Anglo-Saxon Runic. The order of letters in the Anglo-Saxon Runic alphabet is f u th o r c g w h n i j e p x s t b e m l 
ng oe d a ae y ea io k g q st  these characters were divided into six groups of five.

We need to know which of the letter groups in the Celtic or Runic alphabets corresponds to which of the letter 
groups in the Hackness alphabet. Since there are six letter groups, there are a total of 720 different possible 
permutations. A computer program was written to generate all the permutations for each of the two alphabets, giving 
1440 possible readings of the inscription. The most promising permutation was found using the Celtic Ogham 
alphabet, which produced the Old Irish interpretation shown in Table 5.23. The alphabet which produces this 
interpretation is shown in Table 5.24, and the most probable translation of the words on the cross is shown in Table 
5.25.
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Table 5.23 
The Hackness Ogham inscription and Old Irish interpretation

Table 5.24 
The Hackness Ogham alphabet

Reconstruction Old Irish Interpretation

Ceros gu Cross cu Cross to

Rhge Guso Rig Isu King Jesus

crg eng phuir carric an foir rock of help

uit Engoiz uait Oengus from Angus

Table 5.25 
Most probable interpretation of the words on the Hackness cross



 

An Ogham inscription in Old Irish could also have been used in North Yorkshire during the 8th and 9th centuries, 
considering the Celtic origins of Christianity in Northumbria.

Another cryptic inscription on the cross consists of 15 Anglo-Saxon runes, 35 'tree' runes and three Latin letters. The 
tree runes consist of a central vertical 'trunk' with up to four 'branches' on the left side and up to eight 'branches' on 
the right side. This yields an alphabet of 32 letters, consisting of four groups of eight letters, each group having a 
fixed number of left-side 'branches'. However, attempts to make this alphabet coincide with the letters of the Anglo-
Saxon Runic alphabet were not successful.

Sermon also divided the Anglo-Saxon runic alphabet into four groups of
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eight letters. He then needed to find out which group of Anglo-Saxon letters corresponded to which group of tree 
runes. Four groups of letters can be arranged in 24 different orders, so again a computer program was used to 
generate all possible permutations. It was also decided to run the program for groups generated by using the runic 
alphabet in reverse order. This generated 48 possible readings of the inscription, none of which appeared to form any 
intelligible pattern. Sermon concluded that the tree runes were too fragmentary to ever be fully understood.

It was proposed that the runes of the inscription, corresponding to the sequence + E M B D WOE G N L G U I O E R 
were an anagram of Oedilburg gnoew me which corresponds to the Anglo-Saxon Aethelburg knew me meaning 
Aethelburg knew me. The three Latin letters at the end of the tree runes were ORA, meaning pray. Sermon's work is 
also described by Geake (1994).

4.3 A statistical approach to machine translation

Brown et al. (1990) consider the translation of individual sentences, assuming initially that every sentence in one 
language is a possible translation of any sentence in the other. Every possible pair of sentences is assigned a 
probability called the translation probability, denoted Pr(T|S) which is the probability that sentence T in the target 
language (the language we are translating into) is the correct translation of sentence S in the source language (the 
language we are translating from). A second probability that must be considered is the language model probability 

denoted .The task is to search among all possible source sentences to select the sentence S that maximises 

the product 

For the language model, Brown et al. suggest using an n-gram model, which considers the probability of n words 
occurring in sequence. To demonstrate the power of a trigram model (considering the probabilities of sequences of 
three words), they performed the task of bag translation. In bag translation, a sentence is cut up into words and then 
an attempt is made to reconstruct the sentence. The n-gram model is used to calculate which is the most likely of all 
possible arrangements of the words, by multiplying together the probabilities of all the trigrams which make up the 
reconstituted sentence.

For the translation model, Brown et al. take the French translation of an English sentence as being generated from 
the English sentence word by word. For example, in the sentences John loves Mary and Jean aime Marie, John 
aligns with Jean, loves aligns with aime and Mary aligns with Marie. The number of French words that an English 
word produces in an alignment is called its fertility in that alignment. For example, the English word nobody usually 
has a fertility of two since it normally produces both ne and personne in the French equivalent sentence. The term 
distortion is used whenever the word order is not preserved exactly in translation; for example, where an adjective 
precedes the noun it modifies in English but follows it in French. To illustrate the notation used by Brown et al. for 
alignments, consider the sentences John does
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beat the dog and Le chien est battu par Jean. The alignment is denoted (Le chien est battu par  does 
beat(3, 4) the(1) dog(2)), showing that John produces the sixth word in the French sentence, does produces nothing, 
beat produces both the third and fourth words (est battu) and so on. Par is not produced by any of the English 
words. To compute the probability of this alignment, the following calculation is performed:

.

The first line of this equation means multiply the probability that John has a fertility of 1 by the probability that Jean 

is the translation of John.  is the probability that the word par is produced from nothing in the 
equivalent English sentence. The above equation must next be multiplied by the distortion probabilities. These are in 

the form  where i is a target position, j a source position, and l the target length. Thus,  is the 
probability that the first word of the target language was produced by the sixth word of the source language, if the 
target sentence is six words long. The parameters of the translation model are thus the set of fertility probabilities, 
the set of translation probabilities and the set of distortion probabilities.

To search for the sentence S that maximises the product of the language and translation models, Brown et al. start by 
assuming that the target sentence was produced by a sequence of source words that we do not know. For the 

sentence Jean aime Marie, this is denoted  where the asterisk denotes an unknown sequence 
of source words. At the first iteration, they try out all the possibilities where a single word of the source sentence is 

tried out at a given position, such as in the case  which is the probability of John 
producing the first word of the French sentence and the rest of the French sentence being produced by an unknown 

English sequence, or . The attempts with the highest probability of being correct are 
saved, and extended by trying out a second word at the next iteration. The search ends when the likeliest complete 
sentence alignment is found.

The parameters of the language and translation models are estimated from a large quantity of real data. In order to 
estimate the parameters of the language model, where a bigram model was employed, Brown et al. used the English-
language portion of the Canadian Hansards, while to estimate the parameters of the translation model, pairs of 
sentences that are mutual translations (such as found by comparing both the English and French sections of the 
Canadian Hansards) were required.
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To find out which sentences in the English portion of the Hansards corresponded to which sentences in the French 
portion, Brown et al. used a statistical algorithm based on sentence length. However, the resulting sentence pairs 
were still not aligned at the word level. Thus, it was not possible to estimate the translation model parameters by 
simple counting. Instead the EM algorithm (described in Chapter 2, Section 2.10.3) was used by Brown et al. to 
estimate the parameters of the translation model, as described below:

Given some initial estimate of the parameters, we can compute the probability of any particular 
alignment. We can then re-estimate the parameters by weighing each possible alignment according to its 
probability as determined by the initial guess of the parameters. Repeated iterations of this process lead to 
parameters that assign ever greater probability to the set of sentence pairs that we actually observe. 
(1990, p. 82)

In their pilot experiment, the translation and fertility probabilities for the English word not were found as shown in 
Table 5.26.

French Probability Fertility Probability

pas 0.469 2 0.758

ne 0.460 0 0.133

non 0.024 1 0.106

pas du tout 0.003

faux 0.003

plus 0.002

ce 0.002

que 0.002

jamais 0.002

Table 5.26 
Translation and fertility probabilities for not

 

Not surprisingly, pas appears as the most probable translation. The fertility probabilities show that not most often 
translates into two words ne ... pas. However, when these probabilities were used to attempt the translation of 
French into English, fewer than half the translations were acceptable.

Sections 4.1 to 4.3 have illustrated how statistical techniques are not only useful in attributing the authorship or 
determining the chronology of text, but given a corpus of data which is in some sense encoded (such as being 
written in an unknown script or foreign language), we can use statistical techniques to analyse that corpus and 
produce significant results: the translation of known languages or even the decipherment of an unknown language.
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5 Summary

The themes of literary detective work that we have explored in this chapter are:

computer studies of stylometry, including studies of disputed authorship

language relationship and divergence

translation.

Criteria which have been successfully employed in determining authorship in cases of dispute are

usage of function words

word placement within a sentence

proportional pairs or near-synonyms, one of which is favoured more by one author than another

sentence length

Yule's K characteristic, a measure of the probability that any randomly selected pair of words will be identical

vocabulary unique to a particular sample

Bayesian statistics, where a distribution such as the Poisson distribution is used to estimate the probabilities A and B 
of a word occurring a given number of times in two samples of text of known authorship. Once the actual number of 
occurrences of that word in a sample of disputed text is known, the overall probability of that text being written by 
one of the authors is updated by multiplying the prior probability by the ratio of A and B

Milic's D measure, the total number of different part of speech trigrams used, and

the chi-square test to compare the relative usage of different parts of speech in two texts.

Related to the question of disputed authorship is the question of an author's writing style changing over time. This 
may be a smooth progressive change over a lifetime, or may vary according to the choice of pseudonym adopted, or 
to circumstance, where a political writer can be more dogmatic in times of crisis and more tentative in times of 
success. Similarly related to the theme of disputed authorship is the field of forensic stylometry, where distinctions 
are made between real and fabricated confessions, and the authorship of anonymous letters, contracts and wills is 
established. In each case authentic textual material to represent the accused must be provided.

In studies of linguistic relationship, we look for the presence of cognate terms which remain in the daughter 
languages having originated in the antecedent language. A contingency table can be drawn up to record the number 
of words in the antecedent language which remain in both, one or neither daughter languages. Different formulae for 
the correlation coefficient between the daughter languages based on the contingency table apply depending on
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whether the vocabulary of the ancestor language is known or unknown. To examine the question of language 
divergence, we must estimate the retention rate of words in a language. By analogy with the process of radioactive 
decay, the disappearance of an individual cognate term from a language is a random process, but the overall pattern 
of decline in the number of cognate terms in a language as a function of time may be predicted. Different retention 
rates are found in words of different meanings.

In the translation of Linear B, neither the language nor the script was originally known. The size of the alphabet 
suggested that the script was probably syllabic. Grouping of similar words into three cases revealed the common 
inflectional endings, and the existence of 'bridges' which were syllables consisting of the last letter of the root word 
and the first letter of the ending. Using this data, a grid could be composed showing the syllables which had 
consonants and vowels in common. The identification of words such as place names helped show that the underlying 
language was Greek. To decipher the Ogham-like script on the Hackness cross, where the alphabet consisted of six 
clear groups of five characters, known contemporary alphabets were also divided into groups of five contiguous 
letters. All possible permutations of these groups were generated by computer, to see which produced pronounceable 
readings of the runes on the cross. One permutation was decided upon because the resulting transcription 
corresponded with Old Irish. The statistical translation procedure of Brown et al. (1990) consists of a translation 
model which suggests words from the source language that might have produced the words observed in the target 
sentence and a language model which suggests an order in which to place those source words.

6 Exercises

1. The author John Lancaster uses the word while twice every 10,000 words on average. A second author, Richard 
York, uses the word while four times every 10,000 words on average. An anonymous work of length 10,000 words 
is discovered, which contains three occurrences of while. Use the Poisson distribution to estimate who is the more 
likely author of this anonymous work, Lancaster or York, and the odds in that author's favour. Assume that the prior 
odds, based on historical evidence, for Lancaster being the author as opposed to York are 1 to 1.

2. What is Yule's K Characteristic for a text consisting only of the words Home Sweet Home?

3. A sentence of a book is part of speech tagged as follows:

this_ART book_NOUN will_VERB finish_VERB with_PREP a_ART detailed ADJ examination_NOUN of_PREP 
literary_ADJ detective_ADJ work_NOUN

What is Milic's D value for bigrams (pairs of adjacent tags)?
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4. Sundanese, Javanese, Malay and Madurese are all daughter languages of the no longer spoken Proto-Malayo-
Javanic. The words for animal, bird, dog, fish, louse and snake in each of the four daughter languages (Nothofer 
1975) are presented below:

Sundanese Javanese Malay Madurese

animal binatang kewan binatang bhurun alas

bird manuk mano' burung mano'

dog 'anjing asu anjing pate'

fish lauk iwaq ikan jhuko'

louse kutuk lingso kutu koto

snake 'oray ulo ular olar
 

Considering only those words for which the original Proto-Malayo-Javanic can be estimated, find the correlation 
coefficient rn. for the language pair Malay and Madurese.

7 Further Reading

For a broader-based account of author identification, which includes such topics as historical evidence and 
multivariate statistics, consult Authorship Identification and Computational Stylometry, by McEnery and Oakes 
(1997). Another useful review of recent developments in automated stylometry is given by Holmes (1994). 
Chadwick's (1958) account of the decipherment of Linear B is highly accessible to a non-specialist readership.

Note

1. The Nijmegen corpus consists of texts from a wide range of subjects which have been annotated with two 
different syntactic analysis systems. Only the crime fiction texts from the corpus have been used here.
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Glossary

A

a posteriori probability the probability of a hypothesis after new evidence becomes available.

a priori probability the probability of a hypothesis before new evidence becomes available.

abduction reasoning from evidence to hypothesis.

absolute magnitude for a positive value, the value itself; for a negative value, the value when the minus sign has 
been replaced by a plus sign.

agglomerative clustering to start with a number of small clusters, then sequentially merge them until one large 
cluster is left.

algorithm a way of performing a particular task, often incorporated into a computer program.

alignment the practice of defining explicit links between texts in a parallel corpus.

alignment distance the number of operations such as insertion, deletion or substitution required to transform one 
sequence into another.

annotation (i) the practice of adding explicit additional information to machine-readable text; (ii) the physical 
representation of such information.

approximate string matching the identification of words with similar character sequences for error correction or 
information retrieval.

association the relationship formed when two variables such as animacy of a noun and use of the genitive are 
related, so that the presence or level of one variable makes a difference to the distribution of observations on the 
other.

association criteria to compute the strength of a bond between the two lemmas of a pair, enabling lemma pairs to be 
sorted from the most tightly to the least tightly bound.

asymptotic a line which is asymptotic to another line becomes increasingly closer to it without ever touching it.

B

base see logarithm.

BaumWelch algorithm one of a class of algorithms called E-M (estimation-maximisation) which adjusts the 
parameters (such as the transition probabilities) of a hidden Markov model to optimise its performance.

Bayesian statistics a branch of statistics where we talk about belief in a hypothesis rather than its absolute 
probability; this degree of belief may change given new evidence.
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bigram a sequence of two consecutive items such as letters or words.

binomial coefficient the number of ways of selecting r objects out of n; for example, when selecting two letters out 
of three (ABC), we can take (AB), (AC) or (BC), yielding three possibilities.

binomial distribution if n independent experiments are performed, each with the same probability of success (for 
example, an unbiased coin is tossed five times, where a head is deemed a success), the probability of obtaining each 
possible number of successes (from 0 to 5 in our example) is shown by the binomial distribution. binomial

probability graph a graph of the binomial distribution.

block sampling a method of sampling where the starting point of the sample is randomly chosen; the sample is then 
a single continuous portion of text of desired length beginning at the starting point.

C

categorisation the initial identification of classes for classification, which must take place before classification.

central limit theorem when samples are repeatedly drawn from a population, the means of the samples will be 
normally distributed around the population mean.

character a single letter, number, punctuation mark or other symbol.

class exemplar see cluster centroid.

classification the assignment of objects to predefined classes.

cloze procedure a test in which certain words in a text are blanked out and a subject has to guess the missing words.

cluster analysis the discovery of a category structure; finding the natural groups in a series of observations such as 
texts or words.

cluster centroid clusters can be represented by their centroid, which is in some way the 'average' of all the cluster 
members, sometimes called a class exemplar.

clustering the grouping of similar objects, and the keeping apart of dissimilar objects.

coefficient in the expression involving various powers of x such as , a is the coefficient of x2 and b is the 
coefficient of x.

collocation the patterns of combinations of words (for example, with other words) in a text.

common factor variance the amount of variance shared by two variables in principal components analysis.

communality of a variable in principal components analysis is the sum of all the common factor variance of the 
variable over all factors, which is the variance it shares in common with the other variables.

complete linkage or furthest neighbour clustering differs from single linkage in that the similarity between clusters is 
calculated on the basis of the least similar pair of documents, one from each cluster.

component loadings show how the original variables correlate with the principal component in principal components 
analysis.

concordance comprehensive listing of a given item in a corpus (most often a word or a phrase), also showing its 
immediate context.



contingency table method of presenting the frequencies of the outcomes from an experiment in which the 
observations in the sample are classified according to two criteria (Clapham 1996).

continuous data variables which can take any value, not being constrained to a number of discrete values.
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cophenetic correlation coefficient the most common distortion measure, produced by comparing the values in the 
original similarity matrix with the interobject similarities found in the resulting dendrogram.

corpus (i) (loosely) any body of text; (ii) (most commonly) a body of machine-readable text; (iii) (more strictly) a 
finite collection of machine-readable text, sampled to be maximally representative of a language or variety.

curvilinear relations variables are related in curvilinear fashion if a graph of one plotted against the other produces a 
curve.

D

deduction reasoning from hypothesis to evidence.

dendrogram a tree diagram where the branch points show the similarity level at which two entities (data items or 
clusters) fuse to form a single cluster.

dependent variable variable thought to be influenced by one or more independent variables.

dispersion measures show, for example, whether linguistic features are evenly spread throughout the corpus or 
whether they tend to clump together.

dissimilarity measures measures for comparing pairs of items such as sets of index terms or character strings; a high 
score indicates a low degree of similarity. distortion measures show how faithfully or otherwise a set of clusters 
represents the original data.

divisive clustering to start with one large cluster containing the entire data set, then sequentially divide and 
subdivide it until we are left with many small clusters, perhaps containing one data item each.

E

e mathematical constant, equal to about 2.71828183; e to the power x is called the exponential of x, denoted exp x.

eigonvalues the amount of variance accounted for by each component in principal components analysis.

elastic matching see time warping.

E-M algorithm see Baum-Welch algorithm.

e-mail communication system which sends messages and data very quickly to computer sites around the world.

entropy measure of randomness in nature; the amount of information in a message is formally measured by the 
entropy of the message.

equiprobable equally likely.

equivalence if two character strings which are superficially different can be substituted for each other in all contexts 
without making any difference of meaning, then they are said to be equivalent.

ergodic Markov models where every state of the model can be reached from every other state in a finite number of 
steps.

extracted variance in principal components analysis, the sum of the squares of the loadings of the variables on a 
factor.

F



factor analysis multivariate statistical procedure used to reduce the apparent dimensionality of the data; does not lead 
to a unique solution, so factor rotation is required.

factor loading in principal components analysis the correlation between a variable and a factor is called the loading 
of the variable on the factor.

factor rotation allows an experimenter to choose a preferred solution to factor analysis from an infinite set of 
possible solutions.

finite state automata consist of nodes representing states and branches representing
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transitions from one state to another; a transition from state A to state B takes place when the symbol attached 
to branch AB occurs at the input (Salton and McGill 1983).

flexible collocation collocation in which the words may be inflected, the word order may vary and the words can be 
separated by any number of intervening words.

forward-backward algorithm reduces the number of calculations required to evaluate a hidden Markov model, that 
is, compute the probability that a particular sequence of observed outputs would occur as a result of this model.

frequency list list of linguistic units of a text (often words) which also shows their frequency of occurrence within a 
text.

frequency polygon to produce a frequency polygon, plot frequency (the number of data items with a given value) on 
the y-axis against each possible data value on the x-axis; then draw straight lines to connect adjacent points on the 
graph.

furthest neighbour clustering see complete linkage.

H

hapax legomena all the vocabulary items in a text which occur just once each.

hidden Markov model instead of emitting the same symbol each time at a given state (which is the case for the 
observable Markov model), there is now a choice of symbols, each with a certain probability of being selected.

I

independent variable the variable consciously varied by the experimenter, as opposed to the dependent variable 
which is merely observed in response to changes in the independent variable.

information the amount of information in a message is the average number of bits needed to encode all possible 
messages in an optimal encoding; for example, the sex field in a database contains one bit of information because it 
can be coded with one bit if male is replaced by 0 and female is replaced by 1 (Denning 1982).

interaction when three variables are related, in such a way that the association between two of them (such as 
animacy of a noun and the use of the genitive) changes according to the nature or level of the third variable (for 
example, genre), the relationship between the three is called interaction.

interpolation method of estimating a value which is known to fall between two other values.

interval scale as for ratio scale except that the zero point is arbitrary, for example, temperature in degrees centigrade.

inverted file for each term in the lexicon, an associated list of line, paragraph or document reference numbers is 
given; each reference uniquely specifies the location to which a given term has been assigned.

K

keyword word input to a concordance program to obtain the required lines of text.

KWAL keyword and line, a form of concordance which can allow several lines of context either side of the keyword.

KWIC keyword in context, a form of concordance in which a word is given within x words of context either side of 
the keyword.

L



lemma headword form that one would look for if looking up a word in a dictionary, for example, the word-form 
loves belongs to the lemma love.

lexicon essentially synonymous with dictionary - a collection of words and information about them; this term is used 
more commonly than dictionary for machine-readable dictionary databases.

linear describing a straight line.
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linguistics the science of language.

logarithm log, x is called the logarithm to the base a of x; this is the power to which a must be raised in order to get 

x; for example, log2 (8)=3 because .

logistic regression type of loglinear analysis where there is one dependent variable which is to be explained by other 
independent variables.

logit function function of the probability of an event; the natural logarithm of the ratio of the probability of the event 

occurring to the probability of that event not occurring, given by the formula , .

loglinear analysis means of modelling tabular data involving three or more variables.

lower-order relatives marginal tables that can be derived from a particular marginal table are known as its lower-
order relatives.

M

marginal consider a  matrix, with values a and b in the top row and c and d in the bottom row. The row 
marginals will be c + b and c + d, and the column marginals will be a+c and b+d.

Markov model discrete stochastic process, where the probability of each possible state being reached at the next time 
interval depends only on the current state and not on any previous states.

matrix rectangular array of values displayed in rows and columns. An  matrix has m rows and n columns.

mean average of all values in a data set, found by adding up all of the values then dividing by the number of values.

measure of central tendency most typical score for a data set; the three common measures of central tendency are the 
mode, median and mean.

median central value in a data set, where half the values will be above the median and the other half below the 
median.

mode most frequently obtained value in a data set.

monothetic classification employing the Aristotelean definition of a class; all class members must have a certain set 
of properties for membership in the class.

monotonic function a function of x is monotonic if, whenever x increases, the function either increases or stays the 
same, and whenever x decreases, the function either decreases or stays the same.

multidimensional scaling technique which constructs a pictorial representation of the relationships inherent in a 
dissimilarity matrix.

multinomial distribution related to binomial distribution, except that more than two outcomes are possible for each 
experiment.

multiple regression regression is multiple if there are two or more independent variables.

multivariate statistics those statistical methods which deal with the relationships between many different variables.

mutual information probability of two things happening together compared with the probability of their occurring 
independently; it is thus a statistical measure of the degree of relatedness of two elements.



N

Napierian logarithms see natural logarithms.

natural logarithms logarithms to the base e are called natural or Napierian logarithms, and the notation In can be 
used instead of log, (Clapham 1996).

nearest neighbour clustering see single linkage.

n-gram a sequence of n consecutive items such as letters or words.
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node in collocation analysis, the word whose collocates are being investigated; pole.

nominal data the observations are not numeric or quantitative, but are descriptive and have no natural order 
(Clapham 1996).

nominal scale whenever items can be categorised quantitatively (for example, noun, verb, adjective) but the numbers 
we assign to the categories are arbitrary and do not reflect the primacy of any one category over the others.

non-continuous variables can only take one of a number of discrete values.

non-metric scaling one of a number of techniques for mapping subjectively judged similarity data.

non-parametric tests statistical tests that make no assumptions about the underlying population distribution. Such 
tests often use the median of a population and the rank order of the observations.

null hypothesis denoted H0', a particular assertion that is to be accepted or rejected. To decide whether H0 is to be 
accepted or rejected, a significance test tests whether a sample taken from a population could have occurred by 
chance, given that H0 is true (Clapham 1996).

O

observable Markov model see hidden Markov model.

optimal codes coding systems which are free of redundancy.

ordinal scale where the order of items rather than the difference between them is measured.

orthogonal two lines which are orthogonal are at right angles to each other.

P

parallel corpus a corpus which contains the same texts in more than one language.

parametric tests statistical tests which assume that the underlying population is normally distributed, and the mean 
and standard deviation are appropriate measures of central tendency and dispersion.

perplexity the perplexity of a message is the size of the set of equiprobable events which has the same information.

Poisson distribution gives the number of occurrences in a given time of an event which occurs randomly but at a 
given rate (Clapham 1996).

pole see node.

polythetic categorisation items such as documents are placed in the cluster that has the greatest number of attributes 
such as index terms in common, but there is no single attribute which is a prerequisite for cluster membership.

population body of data about which hypotheses are drawn, based on a sample taken from that body of data.

power (of a number) a to the power b, or db, means that b instances of a are multiplied together, for example, 
.

power (of a statistical test) the probability that the test rejects the null hypothesis when it is indeed false (Clapham 
1996).

principal components analysis multivariate statistical procedure used to reduce the apparent dimensionality of the 
data; leads to a unique solution.



Q

quantise to limit a continuous variable such as the amplitude of a speech waveform to values that are integral 
multiples of a basic unit.

R

random (i) having a value which cannot be determined but only described probabilistically; for example, we cannot 
say beforehand what the outcome of a throw of a dice will be, but we can say that there is a one in six chance it will 
be a six; (ii) chosen without regard to any characteristics of the individual members of the
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population, so each has an equal chance of being selected (Hanks 1986).

range highest value in a data set minus the lowest value.

rank order data is said to be in rank order or ranked when arranged in ascending or decending order of magnitude 
according to some observable feature; for example, the text with the greatest number of words will be ranked first 
according to size.

ratio scale exemplified by measurement in centimetres; each unit on the scale is the same as each other unit, and thus 
the difference between 1cm and 2cm is the same as the difference between 9cm and 10cm.

redundancy a measure of how the length of text is increased due to the statistical and linguistic rules governing a 
language.

regression statistical procedure to determine the relationship between a dependent variable and one or more 
independent variables (Clapham 1996).

regression line line which runs most closely through the points of a scatter plot.

reification to interpret meaningfully each component found in principal components analysis.

relative entropy ratio of actual entropy divided by the maximum entropy.

S

saturation model in loglinear analysis, a model in which all the variables interact and which fits the data perfectly.

scatter plot or scatter diagram two dimensional diagram showing values of an independent variable plotted against 
the corresponding values of the dependent variable.

seed point first member of a new cluster.

Shannon diversity depends both on the frequency with which a lemma is found in a lemma pair and the number of 
different lemma pairs in which it is found.

significance/significant reaching a degree of statistical certainty at which it is unlikely that a result is due purely to 
chance.

similarity degree to which two character strings resemble each other; unlike equivalence, this is not an all-or-nothing 
phenomenon, but quantified by a real valued metric.

simple regression regression is simple if there is only one independent variable.

single linkage the best known of the agglomerative clustering methods; clusters are joined at each stage by the single 
shortest or strongest link between them; also referred to as nearest neighbour clustering.

spell checker in word processing, a tool which checks that words have been spelt correctly.

spread sampling as block sampling, but requiring the selection of much smaller samples at different starting points.

standard deviation measure which takes into account the distance of every data item from the mean; the square root 
of variance.

standard error of estimate when taking a number of samples from a population, the variability of the sample means is 
estimated by the standard error of the mean.

standard inter-quartile range the difference between the value one quarter of the way from the top end of a 
distribution and the value three quarters of the way down in that distribution.



statistics (i) any systematic collection and tabulation of meaningful, related facts and data; (ii) the systematic study 
and interpretation of such a collection of facts and data (Pei and Gaynor 1954).
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stemming rules rules for the removal and replacement of common prefixes and suffixes, designed to render 
alternative grammatical forms of a word equivalent.

stochastic matrix all the entries are non-negative; in a row-stochastic matrix the entries in each row add up to 1; a 
two-dimensional transition matrix where the starting states are represented by rows and the final states are 
represented by columns is row-stochastic.

stochastic process family of random variables; the possible values taken by the random variables are called states, 
and these form the state space (Clapham 1996).

stoplist negative dictionary; a list of words not to be considered in a text processing operation.

stratified random sampling sampling technique where different sections of the overall population (such as age 
groups for people) can be represented in the same proportion as they occur in the population as a whole, but within 
each section the members of the sample are chosen by random methods.

string in computer processing, a sequence of characters.

sublanguage constrained variety of a language. Although a sublanguage may be naturally occurring, its key feature 
is that it lacks the productivity generally associated with language.

T

t test statistical significance test based on the difference between observed and expected results.

tag a code attached to words in a text representing some feature or set of features relating to those words, such as 
grammatical part of speech.

tagging marking items in a text with additional information, often relating to their linguistic properties.

tagset collection of tags in the form of a scheme for annotating corpora.

term name, expression or word used for some particular thing, especially in a specialised field of knowledge, for 
example, a medical term (McLeod 1987).

thesaurus lexicographic work which arranges words in meaning-related groups rather than alphabetically.

time warping or elastic matching the need to expand or compress the time axis of a speech signal at various times, 
when the rate of speaking increases and decreases from instant to instant.

tokens in a word frequency list, individual occurrences of words; the number of tokens in a text is the same as the 
total number of words.

transition matrix a repository of transitional probabilities. This is an n-dimensional matrix, depending on the length 
of transition under question. So, for example, with a bigram transition, we require a two-dimensional matrix.

transition probabilities in a Markov model, the probability that the state will be j, given that the previous state was i. 
The transition probability is denoted py.

trigram sequence of three consecutive items such as letters or words.

truncation with simple truncation, an equivalence class consists of all terms beginning with the same n characters.

types number of types in a text is the number of unique word forms, rather than the total number of words in the text.

U



unicity distance number of letters of a coded message needed to achieve a unique and unambiguous solution when 
the original message (or plain text) has a known degree of redundancy.
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univariate concerned with the distribution of a single variable.

V

variable rule analysis form of statistical analysis which tests the effects of combinations of different factors and 
attempts to show which combination accounts best for the data being analysed.

variance measure which takes into account the distance of every data item from the mean; equal to standard 
deviation squared.

Viterbi algorithm reduces the number of calculations required to estimate the most likely sequence of states that a 
hidden Markov model passed through, given the observed sequence of outputs from that model.

W

word index see inverted file.

Z

z score statistical measure of the closeness of an element to the mean value for all the elements in a group.

Zipf's law according to Zipf's law, the rank of a word in a word frequency list ordered by descending frequency of 

occurrence is inversely related to its frequency, as shown by the formula , where k and k and 
g empirically found constants.
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Appendices

Appendix 1 The Normal Distribution

The table gives the proportion of the total area under the curve which lies beyond any given z value (that is, the shaded area in the 
diagram). It is therefore appropriate for a one-tailed (directional) test. For a two-tailed (non-directional) test, the proportions must 
be doubled.

The figures down the left-hand side give values of z to the first decimal place, and those across the top give the second decimal 
place.

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641

0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247

0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859

0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483

0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121

0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776

0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451

0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148

0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867

0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611

1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379

1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170

1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985

1.3 0.0968 0.0951 0.0534 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823

1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681

1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559



1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455

1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367

1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294

1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
 

(Table continued on next page)
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(Table continued from previous page)

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143

2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110

2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084

2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064

2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048

2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036

2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026

2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019

2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014

3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010

3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007

3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005

3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003

3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002

3.5 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
 
  
< previous page page_259 next page >
 

If you like this book, buy it!

http://www.amazon.com/o/asin/0748610324/ref=nosim/duf-20


< previous page page_260 next page >
Page 260

Appendix 2 The Distribution

The table gives critical values oft for significance at various levels, in a two-tailed/non-directional or a one-tailed/
directional test, for different numbers of degrees of freedom. These critical values are the values beyond which lies 
that proportion of the area under the curve which corresponds to the significance level.

Significance level: two-tailed/non-directiona

0.20 0.10 0.05 0.02 0.01

Significance level: one-tailed/directional

Degrees of freedom 0.10 0.05 0.025 0.01 0.005

1 3.078 6.314 12.71 31.82 63.66

2 1.886 2.920 4.303 6.965 9.925

3 1.638 2.353 3.182 4.541 5.841

4 1.533 2.132 2.776 3.747 4.604

5 1.476 2.015 2.571 3.365 4.032

6 1.440 1.943 2.447 3.143 3.707

7 1.415 1.895 2.365 2.998 3.499

8 1.397 1.860 2.306 2.896 3.355

9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169

11 1.363 1.796 2.201 2.718 3.106

12 1.356 1.782 2.179 2.681 3.055

13 1.350 1.771 2.160 2.650 3.012

14 1.345 1.761 2.145 2.624 2.977

15 1.341 1.753 2.131 2.602 2.947

16 1.337 1.746 2.120 2.583 2.921



17 1.333 1.740 2.110 2.567 2.898

18 1.330 1.734 2.101 2.552 2.878

19 1.328 1.729 2.093 2.539 2.861

20 1.325 1.725 2.086 2.528 2.845

21 1.323 1.721 2.080 2.518 2.831

22 1.321 1.717 2.074 2.508 2.819

23 1.319 1.714 2.069 2.500 2.807

24 1.318 1.711 2.064 2.492 2.797

25 1.316 1.708 2.060 2.485 2.787

26 1.315 1.706 2.056 2.479 2.779

27 1.314 1.703 2.052 2.473 2.771

28 1.313 1.701 2.048 2.467 2.763

29 1.311 1.699 2.045 2.462 2.756

30 1.310 1.697 2.042 2.457 2.750

40 1.303 1.684 2.021 2.423 2.704

60 1.296 1.671 2.000 2.390 2.660

120 1.289 1.658 1.980 2.358 2.617

∞ 1.282 1.645 1.960 2.326 2.576
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Appendix 3 The Mann-Whitney U Test

The first table gives the critical values for significance at the p ≤ 0.05 level in a two-tailed/non-directional test, and 
for the p ≤ 0.025 level in a one-tailed/directional test. The second table gives the critical values for the p ≤ 0.01 level 
in a two-tailed/non-directional test, and for the p ≤ 0.0005 level in a one-tailed/directional test. For significance, the 
calculated value of U most be smaller than or equal to the critical value. N1 and N2 are the number of observations 
in the smaller and larger group, respectively.

N2

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N1

p ≤ 0.05 (two-tailed),p ≤ 0.025 (one-tailed)

5 2 3 5 6 7 8 9 11 12 13 14 15 17 18 19 20

6 5 6 8 10 11 13 14 16 17 19 21 22 24 25 27

7 8 10 12 14 16 18 20 22 24 26 28 30 32 34

8 13 15 17 19 22 24 26 29 31 34 36 38 41

9 17 20 23 26 28 31 34 37 39 42 45 48

10 23 26 29 33 36 39 42 45 48 52 55

11 30 33 37 40 44 47 51 55 58 62

12 37 41 45 49 53 57 61 65 69

13 45 50 54 59 63 67 72 76

14 55 59 64 69 74 78 83

15 64 70 75 80 85 90

16 75 81 86 92 98

17 87 93 99 105

18 99 106 112

19 113 119

20 127

p ≤ 0.01 (two tailed), p ≥ 0.005 (one-tailed)



5 0 1 1 2 3 4 5 6 7 7 8 9 10 11 12 13

6 2 3 4 5 6 7 9 10 11 12 13 15 16 17 18

7 4 6 7 9 10 12 13 15 16 18 19 21 22 24

8 7 9 11 13 15 17 18 20 22 24 26 28 30

9 11 13 16 18 20 22 24 27 29 31 33 36

10 16 18 21 24 26 29 31 34 37 39 42

11 21 24 27 30 33 36 39 42 45 48

12 27 31 34 37 41 44 47 51 54

13 34 38 42 45 49 53 57 60

14 42 46 50 54 58 63 67

15 51 55 60 64 69 73

16 60 65 70 74 79

17 70 75 81 86

18 81 87 92

19 93 99

20 105
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Appendix 4 The Sign Test

The table gives critical values of x (the number of cases with the less frequent sign) for different values of N (the 
number of non-fled pairs of scores). For significance, the computed value of x must be smaller than or equal to the 
critical value.

Significance level: two-tailed/non-directional

0. 10 0.05 0.02

Significance level: one-tailed/directional

N 0. 05 0.025 0.0 I

5 0 - -

6 0 0 -

7 0 0 0

8 1 0 0

9 1 1 0

10 1 1 0

11 2 1 1

12 2 2 1

13 3 2 1

14 3 2 2

15 3 3 2

16 4 3 2

17 4 4 3

18 5 4 3

19 5 4 4

20 5 5 4



21 6 5 4

22 6 5 5

23 7 6 5

24 7 6 5

25 7 7 6
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Appendix 5 The Wilcoxon Signed Ranks Test

The table gives critical values of W for different values of N (the number of non-tied pairs of scores). For significance, 
the calculated value must be smaller than or equal to the critical value.

Significance level: two-tailed/non-directional

0.05 0.01

Significance level: one-tailed/directional

N 0.025 0.005

6 0 -

7 2 -

8 3 0

9 5 1

10 8 3

11 10 5

12 13 7

13 17 9

14 21 12

15 25 15

16 29 19

17 34 23

18 40 27

19 46 32

20 52 37

21 58 42

22 65 48



23 73 54

24 81 61

25 89 68
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Appendix 6 The F Distribution

The table gives the critical values of F for different numbers of degrees of freedom (df) in the numerator and in the denominator of the 
expression for F. For each entry, two values are given. The upper value is the critical value for the  level in a one-tailed/directional 
test, and for the  level in a two-tailed/non-directional test. The lower value is the critical value for the  level in a one-
tailed/directional test and for the  level in a two-tailed/non-directional test.

Df in numerator

Df in denominator 1 2 3 4 5 6 7 8 9 10 12 15 20 30 50 ∞

1 161 200 216 225 230 234 237 239 241 242 244 246 248 250 252 254

4052 5000 5403 5625 5764 5859 5928 5981 6022 6056 6106 6157 6209 6261 6303 6366

2 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.5 19.5 19.5

98.5 99.0 99.2 99.2 99.3 99.3 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.5 99.5 99.5

3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.62 8.58 8.53

34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.3 27.2 27.1 26.9 26.7 26.5 26.4 26.1

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.75 5.70 5.63

21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.7 14.5 14.4 14.2 14.0 13.8 13.7 13.5

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.50 4.44 4.36

16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.2 10.1 9.89 9.72 9.55 9.38 9.24 9.02

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.81 3.75 3.67

13.7 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.23 7.09 6.88

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.38 3.32 3.23

12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 5.99 5.86 5.65

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.08 3.02 2.93

11.3 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.20 5.07 4.86

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.86 2.80 2.71

10.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.11 4.96 4.81 4.65 4.52 4.31

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.70 2.64 2.54

10.0 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56 4.41 4.25 4.12 3.91

11 484 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.57 2.51 2.40

9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.40 4.25 4.10 3.94 3.81 3.60

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.47 2.40 2.30

9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.01 3.86 3.70 3.57 3.36

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.38 2.31 2.21

9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.96 3.82 3.66 3.51 3.38 3.17

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.31 2.24 2.13



8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.80 3.66 3.51 3.35 3.22 3.00

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.25 2.18 2.07

8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.67 3.52 3.37 3.21 3.08 2.87

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 239 2.54 2.49 2.42 2.35 2.28 2.19 2.12 2.01

8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.55 3.41 3.26 3.10 2.97 2.75

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.15 2.08 1.96

8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.46 3.31 3.16 3.00 2.87 2.65

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.11 2.04 1 92

8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.37 3.23 3.08 2.92 2.78 2.57

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.07 2.00 1.88

8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.30 3.15 3.00 2.84 2.7l 2.49

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.04 1.97 1.84

8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.78 2.64 2.42

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.92 1.84 1.71

7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 2.99 2.85 2.70 2.54 2.40 2 17

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.84 1.76 1.62

7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70 2.55 2.39 2.25 201

35 4.12 3.27 2.87 2.64 2.49 2.37 2.29 2.22 2.16 2.11 2.04 1.96 1.88 1.79 1.70 1.56

7.42 5.27 4.40 3.91 3.59 3.37 3.20 3.07 2.96 2.88 2.74 2.60 2.44 2.28 2.14 1.89

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.74 1.66 1.51

7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.66 2.52 2.37 2.20 2.06 1.80
 

(Table continued on next page)
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(Table continued from previous page)

Df in numerator

Df in denominator 1 2 3 4 5 6 7 8 9 10 12 15 20 30 50 ∞

45 4.06 3.20 2.81 2.58 2.42 2.31 2.22 2.15 2.10 2.05 1.97 1.89 1.81 1.71 1.63 1.47

7.23 5.11 4.25 3.77 3.45 3.23 3.07 2.94 2.83 2.74 2.61 2.46 2.31 2.14 2.00 1.74

50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.95 1.87 1.78 1.69 1.60 1.44

7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78 2.70 2.56 2.42 2.27 2.10 1.95 1.68

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.65 1.56 1.39

7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.50 2.35 2.20 2.03 1.88 1.60

80 3.96 3.11 2.72 2.49 2.33 2.21 2.13 2.06 2.00 1.95 1.88 1.79 1.70 1.60 1.51 1.32

6.96 4.88 4.04 3.56 3.26 3.04 2.87 2.74 2.64 2.55 2.42 2.27 2.12 1.94 1.79 1.49

100 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.85 1.77 1.68 1.57 1.48 1.28

6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59 2.50 2.37 2.22 2.07 1.89 1.74 1.43

120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.55 1.46 1.25

6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.34 2.19 2.03 1.86 1.70 1.38

∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.46 1.35 1.00

6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.18 2.04 1.88 1.70 1.52 1.00
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Appendix 7 The Chi-Square Distribution

The table gives the critical values of x2 in a two-tailed/non-directional test, for different numbers of degrees of freedom (df). For 
significance, the calculated value must be greater than or equal to the critical value.

Significance level

df 0.20 0.10 0.05 0.025 0.01 0.001

1 1.64 2.71 3.84 5.02 6.64 10.83

2 3.22 4.61 5.99 7.38 9.21 13.82

3 4.64 6.25 7.82 9.35 11.34 16.27

4 5.99 7.78 9.49 11.14 13.28 18.47

5 7.29 9.24 11.07 12.83 15.09 20.52

6 8.56 10.64 12.59 14.45 16.81 22.46

7 9.80 12.02 14.07 16.01 18.48 24.32

8 11.03 13.36 15.51 17.53 20.09 26.12

9 12.24 14.68 16.92 19.02 21.67 27.88

10 13.44 15.99 18.31 20.48 23.21 29.59

11 14.63 17.28 19.68 21.92 24.72 31.26

12 15.81 18.55 21.03 23.34 26.22 32.91

13 16.98 19.81 22.36 24.74 27.69 34.53

14 18.15 21.06 23.68 26.12 29.14 36.12

15 19.31 22.31 25.00 27.49 30.58 37.70

16 20.47 23.54 26.30 28.85 32.00 39.25

17 21.61 24.77 27.59 30.19 33.41 40.79

18 22.76 25.99 28.87 31.53 34.81 42.31

19 23.90 27.20 30.14 32.85 36.19 43.82

20 25.04 28.41 31.41 34.17 37.57 45.31



21 26.17 29.62 32.67 35.48 38.93 46.80

22 27.30 30.81 33.92 36.78 40.29 48.27

23 28.43 32.01 35.17 38.08 41.64 49.73

24 29.55 33.20 36.42 39.36 42.98 51.18

25 30.68 34.38 37.65 40.65 44.31 52.62

26 31.79 35.56 38.89 41.92 45.64 54.05

27 32.91 36.74 40.11 43.19 46.96 55.48

28 34.03 37.92 41.34 44.46 48.28 56.89

29 35.14 39.09 42.56 45.72 49.59 58.30

30 36.25 40.26 43.77 46.98 50.89 59.70

40 47.27 51.81 55.76 59.34 63.69 73.40

50 58.16 63.17 67.50 71.42 76.15 86.66

60 68.97 74.40 79.08 83.30 88.38 99.61

70 79.71 85.53 90.53 95.02 100.4 112.3
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Appendix 8 The Pearson Product-Moment Correlation Coefficient

The table gives the critical values of the Pearson product-moment correlation coefficient, r, for different numbers of 
pairs of observations, N. For significance, the calculated value of r must be greater than or equal to the critical value.

Significance level: two-tailed/non-directional

0.20 0.10 0.05 0.01

Significance level: one-tailed/directional

N 0.10 0.05 0.025 0.005

3 0.951 0.988 0.997 1.000

4 0.800 0.900 0.950 0.990

5 0.687 0.805 0.878 0.959

6 0.608 0.729 0.811 0.917

7 0.551 0.669 0.754 0.875

8 0.507 0.621 0.707 0.834

9 0.472 0.582 0.666 0.798

10 0.443 0.549 0.632 0.765

11 0.419 0.521 0.602 0.735

12 0.398 0.497 0.576 0.708

13 0.380 0.476 0.553 0.684

14 0.365 0.458 0.532 0.661

15 0.351 0.441 0.514 0.641

16 0.338 0.426 0.497 0.623

17 0.327 0.412 0.482 0.606

18 0.317 0.400 0.468 0.590



19 0.308 0.389 0.456 0.575

20 0.299 0.378 0.444 0.561

21 0.291 0.369 0.433 0.549

22 0.284 0.360 0.423 0.537

23 0.277 0.352 0.413 0.526

24 0.271 0.344 0.404 0.515

25 0.265 0.337 0.396 0.505

26 0.260 0.330 0.388 0.496

27 0.255 0.323 0.381 0.487

28 0.250 0.317 0.374 0.479

29 0.245 0.311 0.367 0.471

30 0.241 0.306 0.361 0.463

40 0.207 0.264 0.312 0.403

50 0.184 0.235 0.279 0.361

60 0.168 0.214 0.254 0.330

70 0.155 0.198 0.235 0.306

80 0.145 0.185 0.220 0.286

90 0.136 0.174 0.207 0.270

100 0.129 0.165 0.197 0.256

200 0.091 0.117 0.139 0.182
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Appendix 9 The Spearman Rank Correlation Coefficient

The table gives the critical values of the Spearman rank correlation coefficient, p, for different numbers of pairs of 
observations, N.

Significance level: two-tailed/non-directional

0.20 0.10 0.05 0.01

Significance level: one-tailed/directional

N 0.10 0.05 0.025 0.005

5 0.800 0.900 1.000 -

6 0.657 0.829 0.886 1.000

7 0.571 0.714 0.786 0.929

8 0.524 0.643 0.738 0.881

9 0.483 0.600 0.700 0.833

10 0.455 0.564 0.648 0.794

11 0.427 0.536 0.618 0.755

12 0.406 0.503 0.587 0.727

13 0.385 0.484 0.560 0.703

14 0.367 0.464 0.538 0.679

15 0.354 0.446 0.521 0.654

16 0.341 0.429 0.503 0.635

17 0.328 0.414 0.488 0.618

18 0.317 0.401 0.472 0.600

19 0.309 0.391 0.460 0.584

20 0.299 0.380 0.447 0.570



21 0.292 0.370 0.436 0.556

22 0.284 0.361 0.425 0.544

23 0.278 0.353 0.416 0.532

24 0.271 0.344 0.407 0.521

25 0.265 0.337 0.398 0.511

26 0.259 0.331 0.390 0.501

27 0.255 0.324 0.383 0.492

28 0.250 0.318 0.375 0.483

29 0.245 0.312 0.368 0.475

30 0.240 0.306 0.362 0.467

35 0.222 0.283 0.335 0.433

40 0.207 0.264 0.313 0.405

45 0.194 0.248 0.294 0.382

50 0.184 0.235 0.279 0.363

55 0.175 0.224 0.266 0.346

60 0.168 0.214 0.255 0.331
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Answers to Exercises

Chapter 1

1. (a) yes (b) no (c) yes (d) no (e) yes.

2. (a) ANOVA, (b) matched pairs t test, (c) non-parametric test, such as median or rank sums, (d) non-parametric 
test (since mean is better measure of central tendency than the mean), such as median or rank sums.

3. chi-square = 100, df = 4, significance < 0.001.

Chapter 2

1. 13/21 = 0.62.

2. (a) 1.759 bits (b) 2.322 bits (c) 0.758 (d) 0.242.

3. The = article, stock = adjective, market = noun, run = verb, continues = verb.

Chapter 3

1. Sundanese and Malay merge at 0.82. 
Javanese and Madurese merge at 0.75. 
Sundanese-Malay and Javanese-Madurese merge at 0.4325.

2. (a) 3 (b) 0.4 (c) 0.5.

3. (a) 3 (b) 5. D3= 64.

4. (a) solut- (b) solubl- (c) solut- (d) solut-. solution, solve and solvable form an equivalence class.

Chapter 4

1. machine.

2. (a) cat (b) cat and white are equally likely.

3. a number of.

Chapter 5

1. York, with odds 1.086 to 1.

2. 2,222

3. 10

4. 0.447
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a posteriori probability, 47, 63

a priori probability, 47, 63

Adamson, G. and J. Boreham, 125

agglomerative clustering methods, 116

alignment, 177

Allen, J., 218-19

analysis of deviance table, 45

analysis of variance (ANOVA), 22-4

anaphor resolution, 48

And Quiet Flows the Don, 218

approximate string matching, 120-38

approximations to natural language, 65-7

Aristotelean Ethics, 214

association between variables, 37

association coefficients, 112

association criteria, 171-2

Atwell, E. and S. Elliott, 133-5

Australian speech, 102-5

Austronesian languages, 232-6

average linkage, 118

average mutual information, 64

B

Baayen, H., H. van Halteren and F. Tweedie, 227-30

bag translation, 243

Baillie, W., 221-3



Baum-Welch algorithm, 68, 73-5, 85

Bayesian statistics, 47-9, 208-12

Berry-Rogghe's z score, 163-6

Biber, D., 180-1

Biber, D. and E. Finegan, 105-7

bigram, 60

model, 244

bimodal distribution, 4-5

block sampling, 10

Brainerd, B., 34

Brown, P. et al., 243-4

Brunet's measure of vocabulary richness, 229

C

Canberra metric, 112

Carroll's D2 measure, 190-1

case 1 studies see t test, one-sample

case 2 studies see t test, two-sample

central limit theorem, 6

central tendency measures, 2-3

centroid see class exemplar, 115-16

chain rule, 47-8

Champollion, 163, 184-6

Chanson de Roland, 218-19

chi by degrees of freedom, 28

chi-square, 6, 24-9, 38, 90-1, 191-2

Church, K., W. Gale, P. Hanks and D. Hindle, 14, 89-90

city block distance see Manhattan distance

CLAWS, 79-84, 133-4

cloze procedure, 79

cluster validity, 120

clustering, 95-147



of dialects, 145-6

of documents, 110-20

of words, 120-43
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CobuildDirect, 194

COCOA, 156

Coggins measure, 127

cognates, 129, 233-4

collocation, 149, 158-93

strength measures, 162-93

common factor variance, 99

communality, 101

complete linkage, 119

component loadings, 103

concordance, 149-58

context, 152-3

modes of sorting, 155-6

text selection and preparation, 153-5

contingency table, 170, 230-2

cophenetic correlation coefficient, 120

correlation, 29-33

coefficient, 30, 114

matrix, 102, 106

cosine measure, 114

cost criterion, 180

covariance, 97

matrix, 102

cryptography, 87-8

cubic association ratio, 172

cursive script, 85

cusum technique, 226-7

Cutting tagger, 84-5

D



Daille, B., 169-74

de Haan, P. and R. van Hour, 39-40

degrees of freedom, 28, 42

dependent variable, 33, 96

Dice's similarity coefficient, 125, 137-8, 178, 184, 185

discrete Markov process, 67

dispersion, 189-92

dissimilarity measures, 127

distance coefficients, 111

distinctiveness ratio, 207

distortion, word order, 243

divisive clustering methods, 116

document

clustering, 110-20

indexing, 110

vectors, 143

double association, 176

Dyen, I., A. James and J. Cole, 232-6

dynamic programming, 127-9

E

effect estimates, 38

eigenvalue see extracted variance

elastic matching, 57

Ellegård, A., 207-8, 230-2

entropy, 58-60, 90-1, 190-1

equivalence, 121

ergodic Markov process, 67

estimation-maximisation (EM) algorithm, 47

extracted variance, 99-100

EYEBALL, 1578



F

F value, 23-4, 36

factor analysis, 105-8, 180-1

factor loadings, 106

Faber and McGowan coefficient, 171

feature string comparison, 145-6

Federalist papers, 208-14

fertility, 243-4

finite state automata, 169-70

first-order collocates, 167

first-order model, 65

forensic stylometry, 226-7

forward-backward algorithm, 68-71

French political tracts, 166

French Revolution, 107-8

furthest neighbour see complete linkage

G

Gaelic, 146

Gale, W. and K. Church, 135-6

Gale, W., K. Church and D. Yarowsky, 186-9

Gaussier, E. and J.-M. Langé, 175-7

Gaussier, E., J.-M. Langé and F. Meunier, 174-5

Geffroy, A., J. Guilhamou, A. Hartley and A. Salem, 107-8

Geffroy, A., P. Lafon, G. Siedel and M. Tournier, 166

Generalised Linear Interactive Modelling (GLIM), 38-46

genetic algorithm, 213-14

genitive, 43

genre analysis, 106-7
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G-square, 38, 42, 172, 189

H

Hackness cross, 240-3

Hamann coefficient, 113

hapax legomena, 151, 200-1, 229

Hayashi's quantification method, 192-3

hidden Markov models, 68

hierarchic clustering, 116-20

historical variants of words, 137-8

Holmes, D., 214

Honoré's measure, 229

Horvath, B., 102-5

Hua Xia concordancer for Chinese text, 195

hypothesis testing, 9

I

idiomatic collocations, 159

idiosyncratic collocations, 90, 158-9

Imitation of Christ, The, 203-5

independent variable, 33, 96

Indo-European languages, 232-6

information, 53, 58-60

interaction of variables, 37

interval scale, 11

inverted file, 150

Isocrates, 219-21

isogloss, 145

iterative proportional scaling (IPS), 38-41



J

Jaccard coefficient, 113

Jelinek, E, 76, 181

joint information, 64, 114

Juilland's D measure, 190

Junius letters, 207-8

Juola, P., C. Hall and A. Boggs, 86

K

Kay, M. and M. Röscheisen, 177-9

Kenny, A, 214

Kessler, B., 145-6

keywords in context (KWIC), 151

Kierkegaard, S., 223-4

Kilgarriff, A., 28

Kita, K., Y. Kato, T. Omoto and Y. Yano, 180

Kjellmer, G., 160-1

Kjetsaa, G., 218

Kober, A., 237-8

Köster, P., 214-18

Kulczinsky coefficient, 171

L

Lafon, P., 168

language divergence, 232

language models, 54-5, 76-80

latent root see extracted variance

Leech, G., B. Francis and Xu Xunfeng, 43

Leighton, J, 225-6

Levenshtein distance, 127, 145-6

Lexa, 194-5

Linear B, 236-40



linguistic relationship, 230-6

loadings, 99, 103, 106

log likelihood coefficient see G-square

log log transform, 234

logistic regression, 43

logit function, 46

loglinear analysis, 37

lognormal distribution, 4-5

longest common subsequence, 126-7

longest common substring, 126-7

Lyne, A., 189-92

M

McConnoughy coefficient, 171

McEnery, A., P. Baker and A. Wilson, 17-18

McEnery, A. and M. Oakes, 136-7, 179

machine translation, 243-4

McKinnon, A. and R. Webster, 223-4

MacQueen's algorithm, 116

Manhattan distance, 112

Mann-Whitney U test, 17-18

mapping techniques, 108-9

marginal tables, 39-41

Markov model, 80, 84-5

matched pairs t test, 15-16

mean, 3

median, 2

median test, 18-20

Michaelson, S. and A. Morton, 219-21

Milic, L., 215-18

Milton, J, 189

Minkowski metrics, 112



Mitkov, R., 48, 131
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mode, 2

model, statistical, 37, 42-3, 48

monothetic categorisation, 116

monotonic function, 47

Mormon scripture, 214-15

morphological analysis, 141-3

Morton, A., 200-2, 205-7, 226

Mosteller, E and D. Wallace, 208-12

multi-dimensional scaling, 109

multinomial theorem, 90-1

mutual information, 63-5, 89-90, 114, 171-2, 174-6, 182

N

Nakamura, J. and J. Sinclair, 192-3

nearest neighbour see single linkage

negative binomial model, 209-10

negatively skewed distribution, 4-5

neural network, 213

n-grams, 125, 137-8

model, 243-4

nominal data, 24

nominal scale, 11

non-continuous variables, 32

non-hierarchic clustering, 115-16

non-parametric tests, 10-11, 16-22

normal distribution, 3-5

null hypothesis, 9

O

Oakes, M. and M. Taylor, 141-3

Oakes, M. and Xu Xunfeng, 195



Ochiai coefficient, 171

OCP, 157

Odell, M. and R. Russell, 130

Ogham alphabet, 240-2

omission key, 129-30

optimal codes, 60-2

ordinal scale, 11

Oxford Concordance Program see OCP

P

Paice, C, 124

parallel corpora, 135-7

parametric tests, 10-16

part-of-speech taggers, 80-5

pattern affinity, 175-7

Pauline epistles, 205

Pearson product-moment correlation, 29-32, 113-14, 231

perplexity, 75-6, 144

Phillips, M., 139-41

phi-square coefficient, 171

phone string comparison, 145-6

phrasicon, 189

Poisson distribution, 6

Poisson model, 209-11

Pollock, J. and A. Zamora, 129-30

olythetic categorisation, 116

positively skewed distribution, 4-5

precision, 176 principal components analysis (PCA), 97-105

principal coordinates analysis, 108

probabilistic dictionaries, 179

probabilistic similarity coefficients, 114

probability theory, 3



Proto-Malayo-Javanic, 248

R

range, 6

ratio scale, 11

recall, 176

redundancy, 61-3, 85-6

regression, 29, 33-6

multiple, 35-6

reification, 97-8

relative entropy, 62

Renouf, A. and J. Sinclair, 161-2

Robertson, A. and P. Willett, 137-8

Rosengren's S measure, 191

S

sampling, 9-10

scatter plot, 29-30

second-order collocates, 167

second-order model, 65

seed point, 115-16

Sekine, S., 76, 144

self information, 64

semi inter-quartile range, 6

sentence alignment, 135-7

Sermon, R., 240-3

Shakespeare, W., 221-3

Shannon, C., 55

diversity, 173

game, 85-6

theory of communication, 55

Sichel's measure, 229
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signal processing, 56-7

significance, statistical, 9

Simard, M., G. Foster and P. Isabelle, 136

similarity, 121

coefficients, 111

matrix, 117, 143, 214

simple matching coefficient, 113, 171

Simpson's D measure, 228

single linkage, 118-19, 214

single-pass algorithm, 115

skeleton key, 129-30

Smadja, F., 182-3

Smadja, F., K. McKeown and V. Hatzivassiloglou, 184-6

sociolects, 104

Soundex, 130-1

Spearman's rank correlation coefficient, 32-3

specific mutual information, 64-5

speech, 56-7, 109

SPEEDCOP, 129-30, 137-8

spelling errors, 131-5

spread sampling, 10

standard deviation, 6-8

standard error of differences between means, 13

standard error of estimate (SEE), 31

stemming, 122-5

stochastic process, 56, 65

stoplist, 151

stratified random sampling, 10



stylistics, 88-9

sublanguage, 144

Swadesh's list, 233

Swift, J., 215-18

syntacfic annotation, 227-30

T

t test for independent samples, 11-16

one-sample, 12-13

two-sample, 12-13

TACT, 166

terminology extraction, 169-77

bilingual, 174-7

monolingual, 169-74

thesaurus construction, automatic, 143

third-order model, 66

time warping, 57

Tottie, G., 36

transition probabilities, 66, 79

trigram, 60

model, 243

truncation, 122

Tweedie, F., S. Singh and D. Holmes, 212-13

two-pass algorithm, 116

V

variance, 6, 98

Ventris, M., 239-40

Viterbi algorithm, 68, 72-3

W

Ward's method, 119

Wilcoxon matched pairs signed ranks test, 21-2

Wilcoxon rank sums test, 17-18



word retention rate, 232-6

word segmentation, 86, 182

word sense disambiguation, 186-9

WordCruncher, 158

WordSmith, 193-4

X

XTRACT, 182-3

Xu Xin, 31

Y

Yamamoto, M., 26

Yannakoudakis, E. and D. Fawthrop, 132

Yardi's discriminant function, 223

Yates's correction, 25

Yule's K characteristic, 171, 204-5, 207, 214

Z

z score, 7-8

Zernik, U., 138-9
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